Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA.
Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL, 60611, USA.
Small. 2021 Feb;17(5):e2005743. doi: 10.1002/smll.202005743. Epub 2021 Jan 15.
Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remains a challenge using conventional fabrication techniques. Here, a method is reported for 3D printing of ionically crosslinked liquid crystalline hydrogels from aqueous supramolecular polymer inks. Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks. Enhanced hierarchical interactions among assemblies in high viscosity inks increase the printability and ultimately lead to greater nanoscale alignment in extruded macroscopic filaments when using small nozzle diameters and fast print speeds. The use of this approach is demonstrated to create materials with anisotropic ionic and electronic charge transport as well as scaffolds that trigger the macroscopic alignment of cells due to the synergy of supramolecular self-assembly and additive manufacturing.
液晶水凝胶是一类很有吸引力的软材料,可以用于指导电荷传输、机械致动和细胞迁移。当此类系统包含超分子聚合物时,原则上可以很容易地剪切对齐纳米级结构并产生整体各向异性性质。然而,使用传统的制造技术,在 3D 水凝胶中可重复地制造和图案化各向异性的超分子结构仍然是一个挑战。在这里,报道了一种从水相超分子聚合物墨水 3D 打印离子交联液晶水凝胶的方法。通过实验技术和分子动力学模拟的结合,发现 pH 值和盐浓度控制着自组装结构之间的分子间相互作用,其中超分子聚合物上的电荷密度较低,电解质的电荷屏蔽作用较高,导致墨水的粘度较高。在高粘度墨水中,组装体之间的增强的分层相互作用提高了可打印性,并且当使用小喷嘴直径和快速打印速度时,最终导致挤出的宏观长丝中的纳米级排列更好。该方法的应用证明了可以制造具有各向异性离子和电子电荷传输的材料,以及由于超分子自组装和增材制造的协同作用而引发细胞宏观排列的支架。