Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India.
Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India.
Biomacromolecules. 2021 Feb 8;22(2):594-611. doi: 10.1021/acs.biomac.0c01445. Epub 2021 Jan 15.
Strategies involving the inclusion of cell-instructive chemical and topographical cues to smart biomaterials in combination with a suitable physical stimulus may be beneficial to enhance nerve-regeneration rate. In this regard, we investigated the surface functionalization of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)-based electroconductive electrospun nanofibers coupled with externally applied electrical stimulus for accelerated neuronal growth potential. In addition, the voltage-dependent conductive mechanism of the nanofibers was studied in depth to interlink intrinsic conductive properties with electrically stimulated neuronal expressions. Surface functionalization was accomplished using 3-aminopropyltriethoxysilane (APTES) and 1,6-hexanediamine (HDA) as an alternative to costly biomolecule coating (e.g., collagen) for cell adhesion. The nanofibers were uniform, porous, electrically conductive, mechanically strong, and stable under physiological conditions. Surface amination boosted biocompatibility, 3T3 cell adhesion, and spreading, while the neuronal model rat PC12 cell line showed better differentiation on surface-functionalized mats compared to nonfunctionalized mats. When coupled with electrical stimulation (ES), these mats showed comparable or faster neurite formation and elongation than the collagen-coated mats with no-ES conditions. The findings indicate that surface amination in combination with ES may provide an improved strategy to faster nerve regeneration using MEH-PPV-based neural scaffolds.
涉及将具有细胞指令性的化学物质和拓扑线索纳入智能生物材料,并结合适当的物理刺激的策略可能有利于提高神经再生率。在这方面,我们研究了基于聚2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基乙烯基的导电电纺纳米纤维的表面功能化,这些纳米纤维与外部施加的电刺激相结合,以增强神经元的生长潜力。此外,还深入研究了纳米纤维的电压依赖性导电机制,将内在导电特性与电刺激神经元表达联系起来。表面功能化是通过使用 3-氨丙基三乙氧基硅烷(APTES)和 1,6-己二胺(HDA)来完成的,它们可以替代昂贵的生物分子涂层(例如胶原蛋白)来促进细胞黏附。纳米纤维均匀、多孔、导电、机械强度高,在生理条件下稳定。表面氨化提高了生物相容性、3T3 细胞黏附和扩散,而神经元模型大鼠 PC12 细胞系在表面功能化垫上的分化明显优于非功能化垫。与电刺激(ES)结合时,这些垫子上的神经突形成和伸长速度与无 ES 条件下的胶原蛋白涂层垫子相当或更快。研究结果表明,表面氨化与 ES 相结合,可能为使用 MEH-PPV 基神经支架更快地神经再生提供一种改进的策略。