Rybak Miłosz, Woźniak Tomasz, Birowska Magdalena, Dybała Filip, Segura Alfredo, Kapcia Konrad J, Scharoch Paweł, Kudrawiec Robert
Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura St. 5, 02-093 Warsaw, Poland.
Nanomaterials (Basel). 2022 Sep 30;12(19):3433. doi: 10.3390/nano12193433.
Optical measurements under externally applied stresses allow us to study the materials' electronic structure by comparing the pressure evolution of optical peaks obtained from experiments and theoretical calculations. We examine the stress-induced changes in electronic structure for the thermodynamically stable 1T polytype of selected MX2 compounds (M=Hf, Zr, Sn; X=S, Se), using the density functional theory. We demonstrate that considered 1T-MX2 materials are semiconducting with indirect character of the band gap, irrespective to the employed pressure as predicted using modified Becke-Johnson potential. We determine energies of direct interband transitions between bands extrema and in band-nesting regions close to Fermi level. Generally, the studied transitions are optically active, exhibiting in-plane polarization of light. Finally, we quantify their energy trends under external hydrostatic, uniaxial, and biaxial stresses by determining the linear pressure coefficients. Generally, negative pressure coefficients are obtained implying the narrowing of the band gap. The semiconducting-to-metal transition are predicted under hydrostatic pressure. We discuss these trends in terms of orbital composition of involved electronic bands. In addition, we demonstrate that the measured pressure coefficients of HfS2 and HfSe2 absorption edges are in perfect agreement with our predictions. Comprehensive and easy-to-interpret tables containing the optical features are provided to form the basis for assignation of optical peaks in future measurements.
在外部施加应力的情况下进行光学测量,通过比较实验获得的光学峰的压力演变和理论计算结果,使我们能够研究材料的电子结构。我们使用密度泛函理论,研究了选定的MX2化合物(M = Hf、Zr、Sn;X = S、Se)的热力学稳定1T多型体中应力诱导的电子结构变化。我们证明,考虑到的1T-MX2材料是具有间接带隙特性的半导体,无论使用修正的Becke-Johnson势预测的压力如何。我们确定了能带极值之间以及靠近费米能级的能带嵌套区域中的直接带间跃迁能量。一般来说,所研究的跃迁是光学活性的,表现出光的面内偏振。最后,我们通过确定线性压力系数来量化它们在外部静水压力、单轴和双轴应力下的能量趋势。一般来说,得到的是负压系数,这意味着带隙变窄。预测在静水压力下会发生半导体到金属的转变。我们根据所涉及电子能带的轨道组成来讨论这些趋势。此外,我们证明了HfS2和HfSe2吸收边的测量压力系数与我们的预测完全一致。提供了包含光学特征的全面且易于解释的表格,为未来测量中光学峰的归属奠定基础。