Suppr超能文献

普通栓菌倍半萜成分的种间相互作用功能。

Function of sesquiterpenes from Schizophyllum commune in interspecific interactions.

机构信息

Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.

Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.

出版信息

PLoS One. 2021 Jan 15;16(1):e0245623. doi: 10.1371/journal.pone.0245623. eCollection 2021.

Abstract

Wood is a habitat for a variety of organisms, including saprophytic fungi and bacteria, playing an important role in wood decomposition. Wood inhabiting fungi release a diversity of volatiles used as signaling compounds to attract or repel other organisms. Here, we show that volatiles of Schizophyllum commune are active against wood-decay fungi and bacteria found in its mycosphere. We identified sesquiterpenes as the biologically active compounds, that inhibit fungal growth and modify bacterial motility. The low number of cultivable wood inhabiting bacteria prompted us to analyze the microbial community in the mycosphere of S. commune using a culture-independent approach. Most bacteria belong to Actinobacteria and Proteobacteria, including Pseudomonadaceae, Sphingomonadaceae, Erwiniaceae, Yersiniaceae and Mariprofundacea as the dominating families. In the fungal community, the phyla of ascomycetes and basidiomycetes were well represented. We propose that fungal volatiles might have an important function in the wood mycosphere and could meditate interactions between microorganisms across domains and within the fungal kingdom.

摘要

木材是多种生物的栖息地,包括腐生真菌和细菌,在木材分解中起着重要作用。木材栖息真菌释放出多种挥发物,用作信号化合物,以吸引或排斥其他生物。在这里,我们表明,裂褶菌的挥发物对其菌根中的木材腐朽真菌和细菌具有活性。我们确定了倍半萜类化合物是具有生物活性的化合物,它们抑制真菌生长并改变细菌的运动性。可培养的木材栖息细菌数量较少,促使我们使用非培养方法分析裂褶菌菌根中的微生物群落。大多数细菌属于放线菌门和变形菌门,包括假单胞菌科、鞘氨醇单胞菌科、欧文氏菌科、耶尔森氏菌科和深海菌科,它们是主要的科。在真菌群落中,子囊菌门和担子菌门的真菌种类丰富。我们提出,真菌挥发物可能在木材菌根中具有重要功能,并可以介导不同领域和真菌界内微生物之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/7810277/e9b76bbb7cae/pone.0245623.g001.jpg

相似文献

1
Function of sesquiterpenes from Schizophyllum commune in interspecific interactions.
PLoS One. 2021 Jan 15;16(1):e0245623. doi: 10.1371/journal.pone.0245623. eCollection 2021.
2
Response of the wood-decay fungus Schizophyllum commune to co-occurring microorganisms.
PLoS One. 2020 Apr 23;15(4):e0232145. doi: 10.1371/journal.pone.0232145. eCollection 2020.
4
Anti-Inflammatory Sesquiterpenes from Fruiting Bodies of .
J Agric Food Chem. 2024 Mar 13;72(10):5416-5427. doi: 10.1021/acs.jafc.3c08313. Epub 2024 Mar 4.
5
Mannonerolidol, a new nerolidol mannoside from culture broth of Schizophyllum commune.
J Antibiot (Tokyo). 2019 Mar;72(3):178-180. doi: 10.1038/s41429-018-0130-3. Epub 2018 Dec 12.
6
Production of (+)-valencene in the mushroom-forming fungus S. commune.
Appl Microbiol Biotechnol. 2014 Jun;98(11):5059-68. doi: 10.1007/s00253-014-5581-2. Epub 2014 Feb 16.
7
Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.
Environ Sci Pollut Res Int. 2015 Sep;22(18):13724-38. doi: 10.1007/s11356-015-4117-3. Epub 2015 Jan 25.
8
10
Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune.
Bioresour Technol. 2015 Dec;197:37-41. doi: 10.1016/j.biortech.2015.08.031. Epub 2015 Aug 18.

引用本文的文献

1
A bibliometric analysis of fungal volatile organic compounds.
Fungal Biol Biotechnol. 2025 Jul 2;12(1):12. doi: 10.1186/s40694-025-00203-x.
2
Characterization of the Cubamyces Menziesii Terpenome.
Chembiochem. 2025 Aug 22;26(15):e202401083. doi: 10.1002/cbic.202401083. Epub 2025 Apr 30.
3
Application of valencene and prospects for its production in engineered microorganisms.
Front Microbiol. 2024 Aug 7;15:1444099. doi: 10.3389/fmicb.2024.1444099. eCollection 2024.
7
Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by .
J Fungi (Basel). 2022 May 24;8(6):555. doi: 10.3390/jof8060555.
8
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis.
Microbiol Mol Biol Rev. 2022 Mar 16;86(1):e0001921. doi: 10.1128/MMBR.00019-21. Epub 2021 Nov 24.

本文引用的文献

1
Response of the wood-decay fungus Schizophyllum commune to co-occurring microorganisms.
PLoS One. 2020 Apr 23;15(4):e0232145. doi: 10.1371/journal.pone.0232145. eCollection 2020.
2
Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.
New Phytol. 2019 Oct;224(2):902-915. doi: 10.1111/nph.16032. Epub 2019 Aug 1.
3
The regulator of G-protein signalling Thn1 links pheromone response to volatile production in Schizophyllum commune.
Environ Microbiol. 2018 Oct;20(10):3684-3699. doi: 10.1111/1462-2920.14369. Epub 2018 Sep 17.
4
Fungal volatiles - a survey from edible mushrooms to moulds.
Nat Prod Rep. 2017 Mar 17;34(3):310-328. doi: 10.1039/c7np00003k.
5
Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi.
Microbiol Spectr. 2016 Dec;4(6). doi: 10.1128/microbiolspec.FUNK-0019-2016.
6
Smelling the difference: Transcriptome, proteome and volatilome changes after mating.
Fungal Genet Biol. 2018 Mar;112:2-11. doi: 10.1016/j.fgb.2016.08.007. Epub 2016 Sep 1.
7
Bacterial Community Succession in Pine-Wood Decomposition.
Front Microbiol. 2016 Mar 1;7:231. doi: 10.3389/fmicb.2016.00231. eCollection 2016.
8
Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood.
PLoS One. 2016 Jan 29;11(1):e0147100. doi: 10.1371/journal.pone.0147100. eCollection 2016.
9
Microbial Small Talk: Volatiles in Fungal-Bacterial Interactions.
Front Microbiol. 2016 Jan 5;6:1495. doi: 10.3389/fmicb.2015.01495. eCollection 2015.
10
Fungal volatile organic compounds and their role in ecosystems.
Appl Microbiol Biotechnol. 2015 Apr;99(8):3395-405. doi: 10.1007/s00253-015-6494-4. Epub 2015 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验