Bio-Organic Chemistry Research Group, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513 (STO3.41), 5600 MB, Eindhoven, The Netherlands.
Chembiochem. 2021 Jun 15;22(12):2051-2078. doi: 10.1002/cbic.202000850. Epub 2021 Mar 4.
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
区隔化是定义生命系统的主要特征之一。创造一个物理上分隔的微环境可以让自然更好地控制生物过程,这一点在细胞器在活细胞中的作用中得到了明确的体现。受此启发,研究人员开发了一系列不同的方法来创建人工细胞器:具有催化活性的隔室,为活细胞添加新功能。在这篇综述中,我们将讨论三条互补的研究线索。首先,我们讨论了正交化学方法,这些方法基于将具有催化活性的含过渡金属纳米颗粒掺入活细胞中。第二种方法涉及使用预制的混合纳米反应器,当这些反应器被活细胞摄取时,它们会表现出短暂的功能。第三种方法主要利用遗传工程方法来创建可以最终与细胞基因组整合的基于生物的结构,使其成为组成型活性。将通过三个方法中的精选实例突出显示当前的最新技术水平以及该领域的范围和局限性。