Suppr超能文献

基于脑电的二分类听觉注意检测模型在在线实验中的实现。

Implementation of an Online Auditory Attention Detection Model with Electroencephalography in a Dichotomous Listening Experiment.

机构信息

Center for Intelligent & Interactive Robotics, Artificial Intelligence and Robot Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.

Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul 04763, Korea.

出版信息

Sensors (Basel). 2021 Jan 13;21(2):531. doi: 10.3390/s21020531.

Abstract

Auditory attention detection (AAD) is the tracking of a sound source to which a listener is attending based on neural signals. Despite expectation for the applicability of AAD in real-life, most AAD research has been conducted on recorded electroencephalograms (EEGs), which is far from online implementation. In the present study, we attempted to propose an online AAD model and to implement it on a streaming EEG. The proposed model was devised by introducing a sliding window into the linear decoder model and was simulated using two datasets obtained from separate experiments to evaluate the feasibility. After simulation, the online model was constructed and evaluated based on the streaming EEG of an individual, acquired during a dichotomous listening experiment. Our model was able to detect the transient direction of a participant's attention on the order of one second during the experiment and showed up to 70% average detection accuracy. We expect that the proposed online model could be applied to develop adaptive hearing aids or neurofeedback training for auditory attention and speech perception.

摘要

听觉注意力检测(AAD)是基于神经信号来跟踪听众正在关注的声源。尽管人们期望 AAD 在现实生活中的适用性,但大多数 AAD 研究都是在记录的脑电图(EEG)上进行的,这与在线实施相去甚远。在本研究中,我们试图提出一种在线 AAD 模型,并将其应用于实时 EEG。所提出的模型是通过在线性解码器模型中引入滑动窗口来设计的,并使用来自两个单独实验的数据进行模拟,以评估其可行性。模拟后,根据个体在二分听实验中获取的实时 EEG 构建并评估在线模型。我们的模型能够在实验过程中以大约一秒的时间分辨率检测到参与者注意力的瞬时方向,平均检测准确率高达 70%。我们期望所提出的在线模型可以应用于开发自适应助听器或用于听觉注意力和语音感知的神经反馈训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f329/7828508/5380acf3058f/sensors-21-00531-g001.jpg

相似文献

2
Time-Adaptive Unsupervised Auditory Attention Decoding Using EEG-Based Stimulus Reconstruction.
IEEE J Biomed Health Inform. 2022 Aug;26(8):3767-3778. doi: 10.1109/JBHI.2022.3162760. Epub 2022 Aug 11.
4
Cortical Auditory Attention Decoding During Music and Speech Listening.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2903-2911. doi: 10.1109/TNSRE.2023.3291239. Epub 2023 Jul 12.
5
Decoding selective auditory attention with EEG using a transformer model.
Methods. 2022 Aug;204:410-417. doi: 10.1016/j.ymeth.2022.04.009. Epub 2022 Apr 18.
7
Decoding the Attended Speaker From EEG Using Adaptive Evaluation Intervals Captures Fluctuations in Attentional Listening.
Front Neurosci. 2020 Jun 16;14:603. doi: 10.3389/fnins.2020.00603. eCollection 2020.
8
Congruent audiovisual speech enhances auditory attention decoding with EEG.
J Neural Eng. 2019 Nov 6;16(6):066033. doi: 10.1088/1741-2552/ab4340.
9
EEG-based auditory attention decoding using speech-level-based segmented computational models.
J Neural Eng. 2021 May 25;18(4). doi: 10.1088/1741-2552/abfeba.
10
The Combination of Neural Tracking and Alpha Power Lateralization for Auditory Attention Detection.
J Speech Lang Hear Res. 2021 Sep 14;64(9):3603-3616. doi: 10.1044/2021_JSLHR-20-00608. Epub 2021 Aug 17.

引用本文的文献

1
A Review of Auditory Attention: Neural Mechanisms, Theories, and Affective Disorders.
Indian J Otolaryngol Head Neck Surg. 2024 Jun;76(3):2250-2256. doi: 10.1007/s12070-023-04373-1. Epub 2024 Jan 19.

本文引用的文献

2
Linguistic Structure and Meaning Organize Neural Oscillations into a Content-Specific Hierarchy.
J Neurosci. 2020 Dec 2;40(49):9467-9475. doi: 10.1523/JNEUROSCI.0302-20.2020. Epub 2020 Oct 23.
3
Speech rhythms and their neural foundations.
Nat Rev Neurosci. 2020 Jun;21(6):322-334. doi: 10.1038/s41583-020-0304-4. Epub 2020 May 6.
5
Selective auditory attention detection based on effective connectivity by single-trial EEG.
J Neural Eng. 2020 Apr 17;17(2):026021. doi: 10.1088/1741-2552/ab7c8d.
6
Neural Entrainment and Attentional Selection in the Listening Brain.
Trends Cogn Sci. 2019 Nov;23(11):913-926. doi: 10.1016/j.tics.2019.08.004. Epub 2019 Oct 9.
8
Neural indices of listening effort in noisy environments.
Sci Rep. 2019 Aug 2;9(1):11278. doi: 10.1038/s41598-019-47643-1.
9
EEG-assisted Modulation of Sound Sources in the Auditory Scene.
Biomed Signal Process Control. 2018 Jan;39:263-270. doi: 10.1016/j.bspc.2017.08.008. Epub 2017 Aug 16.
10
The Role of Low-frequency Neural Oscillations in Speech Processing: Revisiting Delta Entrainment.
J Cogn Neurosci. 2019 Aug;31(8):1205-1215. doi: 10.1162/jocn_a_01410. Epub 2019 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验