Suppr超能文献

基于脑电图的刺激重建的时间自适应无监督听觉注意解码

Time-Adaptive Unsupervised Auditory Attention Decoding Using EEG-Based Stimulus Reconstruction.

作者信息

Geirnaert Simon, Francart Tom, Bertrand Alexander

出版信息

IEEE J Biomed Health Inform. 2022 Aug;26(8):3767-3778. doi: 10.1109/JBHI.2022.3162760. Epub 2022 Aug 11.

Abstract

The goal of auditory attention decoding (AAD) is to determine to which speaker out of multiple competing speakers a listener is attending based on the brain signals recorded via, e.g., electroencephalography (EEG). AAD algorithms are a fundamental building block of so-called neuro-steered hearing devices that would allow identifying the speaker that should be amplified based on the brain activity. A common approach is to train a subject-specific stimulus decoder that reconstructs the amplitude envelope of the attended speech signal. However, training this decoder requires a dedicated 'ground-truth' EEG recording of the subject under test, during which the attended speaker is known. Furthermore, this decoder remains fixed during operation and can thus not adapt to changing conditions and situations. Therefore, we propose an online time-adaptive unsupervised stimulus reconstruction method that continuously and automatically adapts over time when new EEG and audio data are streaming in. The adaptive decoder does not require ground-truth attention labels obtained from a training session with the end-user and instead can be initialized with a generic subject-independent decoder or even completely random values. We propose two different implementations: a sliding window and recursive implementation, which we extensively validate on three independent datasets based on multiple performance metrics. We show that the proposed time-adaptive unsupervised decoder outperforms a time-invariant supervised decoder, representing an important step toward practically applicable AAD algorithms for neuro-steered hearing devices.

摘要

听觉注意力解码(AAD)的目标是基于通过例如脑电图(EEG)记录的大脑信号,确定听众在多个竞争说话者中正在关注哪一个说话者。AAD算法是所谓的神经导向听力设备的基本组成部分,这种设备能够根据大脑活动识别应该被放大的说话者。一种常见的方法是训练一个特定于受试者的刺激解码器,该解码器重建被关注语音信号的幅度包络。然而,训练这个解码器需要对被测受试者进行专门的“真实情况”EEG记录,在此期间被关注的说话者是已知的。此外,这个解码器在操作过程中保持固定,因此无法适应不断变化的条件和情况。因此,我们提出一种在线时间自适应无监督刺激重建方法,当新的EEG和音频数据流进来时,它会随着时间不断自动适应。自适应解码器不需要从与最终用户的训练会话中获得的真实注意力标签,而是可以用一个通用的独立于受试者的解码器甚至完全随机的值进行初始化。我们提出了两种不同的实现方式:滑动窗口和递归实现方式,我们基于多个性能指标在三个独立数据集上对其进行了广泛验证。我们表明,所提出的时间自适应无监督解码器优于时间不变的监督解码器,这代表了朝着神经导向听力设备实际适用的AAD算法迈出的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验