Suppr超能文献

婴儿对人工句子熟悉度的神经网络模拟:无明确规则和变量的类规则行为

Neural Network Simulation of Infant Familiarization to Artificial Sentences: Rule-Like Behavior Without Explicit Rules and Variables.

作者信息

Shultz Thomas R, Bale Alan C

机构信息

Department of Psychology McGill University.

Department of Linguistics McGill University.

出版信息

Infancy. 2001 Oct;2(4):501-536. doi: 10.1207/S15327078IN0204_07. Epub 2001 Oct 1.

Abstract

A fundamental issue in cognitive science is whether human cognitive processing is better explained by symbolic rules or by subsymbolic neural networks. A recent study of infant familiarization to sentences in an artificial language seems to have produced data that can only be explained by symbolic rule learning and not by unstructured neural networks (Marcus, Vijayan, Bandi Rao, & Vishton, 1999). Here we present successful unstructured neural network simulations of the infant data, showing that these data do not uniquely support a rule-based account. In contrast to other simulations of these data, these simulations cover more aspects of the data with fewer assumptions about prior knowledge and training, using a more realistic coding scheme based on sonority of phonemes. The networks show exponential decreases in attention to a repeated sentence pattern, more recovery to novel sentences inconsistent with the familiar pattern than to novel sentences consistent with the familiar pattern, occasional familiarity preferences, more recovery to consistent novel sentences than to familiarized sentences, and extrapolative generalization outside the range of the training patterns. A variety of predictions suggest the utility of the model in guiding future psychological work. The evidence, from these and other simulations, supports the view that unstructured neural networks can account for the existing infant data.

摘要

认知科学中的一个基本问题是,人类认知加工用符号规则解释更好,还是用亚符号神经网络解释更好。最近一项关于婴儿对人工语言句子熟悉程度的研究似乎得出了一些数据,这些数据只能用符号规则学习来解释,而不能用无结构神经网络来解释(马库斯、维贾扬、班迪·拉奥和维斯顿,1999)。在此,我们展示了对婴儿数据成功的无结构神经网络模拟,表明这些数据并非唯一支持基于规则的解释。与对这些数据的其他模拟不同,这些模拟用更少的关于先验知识和训练的假设涵盖了数据的更多方面,采用了一种基于音素响度的更现实的编码方案。这些网络对重复句子模式的注意力呈指数下降,对与熟悉模式不一致的新句子的恢复比对与熟悉模式一致的新句子的恢复更多,偶尔会有熟悉度偏好,对一致的新句子的恢复比对熟悉句子的恢复更多,并且在训练模式范围之外进行外推泛化。各种预测表明了该模型在指导未来心理学研究方面的效用。来自这些模拟和其他模拟的证据支持了这样一种观点,即无结构神经网络可以解释现有的婴儿数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验