Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62, Lund, Sweden.
Faculté de Pharmacie, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
Sci Rep. 2021 Jan 15;11(1):1514. doi: 10.1038/s41598-021-81089-8.
The direct reprogramming of adult skin fibroblasts to neurons is thought to be controlled by a small set of interacting gene regulators. Here, we investigate how the interaction dynamics between these regulating factors coordinate cellular decision making in direct neuronal reprogramming. We put forward a quantitative model of the governing gene regulatory system, supported by measurements of mRNA expression. We found that nPTB needs to feed back into the direct neural conversion network most likely via PTB in order to accurately capture quantitative gene interaction dynamics and correctly predict the outcome of various overexpression and knockdown experiments. This was experimentally validated by nPTB knockdown leading to successful neural conversion. We also proposed a novel analytical technique to dissect system behaviour and reveal the influence of individual factors on resulting gene expression. Overall, we demonstrate that computational analysis is a powerful tool for understanding the mechanisms of direct (neuronal) reprogramming, paving the way for future models that can help improve cell conversion strategies.
人们认为,将成人皮肤成纤维细胞直接重编程为神经元受一小部分相互作用的基因调控因子控制。在这里,我们研究了这些调节因子之间的相互作用动力学如何协调直接神经元重编程中的细胞决策。我们提出了一个定量的基因调控系统模型,该模型得到了 mRNA 表达测量的支持。我们发现,nPTB 可能需要通过 PTB 反馈到直接神经转化网络中,以准确捕捉定量的基因相互作用动力学,并正确预测各种过表达和敲低实验的结果。通过 nPTB 敲低导致成功的神经转化,实验验证了这一点。我们还提出了一种新的分析技术来剖析系统行为并揭示单个因素对最终基因表达的影响。总的来说,我们证明了计算分析是理解直接(神经元)重编程机制的有力工具,为未来的模型铺平了道路,这些模型可以帮助改进细胞转化策略。