Suppr超能文献

N-乙酰葡萄糖胺通过触发少突胶质前体细胞分化来驱动髓鞘形成。

N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation.

机构信息

Department of Neurology, University of California Irvine, Irvine, California, USA.

Department of Neurology, University of California Irvine, Irvine, California, USA; Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

出版信息

J Biol Chem. 2020 Dec 18;295(51):17413-17424. doi: 10.1074/jbc.RA120.015595.

Abstract

Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.

摘要

髓鞘形成在认知发育中起着重要作用,在脱髓鞘疾病中,如多发性硬化症(MS),髓鞘形成失败会导致永久性的神经轴突损伤。细胞表面受体的分支 N-聚糖修饰通过控制糖蛋白聚集、信号转导和内吞作用来协调细胞生长和分化。GlcNAc 是 N-聚糖分支的限速代谢物。在这里,我们报告 GlcNAc 和 N-聚糖分支通过抑制血小板衍生生长因子受体-α细胞内吞作用来触发前体细胞向少突胶质细胞分化。在哺乳期小鼠中口服提供 GlcNAc 通过在母乳中分泌来驱动新生幼仔的初级髓鞘形成,而遗传阻断 N-聚糖分支则显著抑制初级髓鞘形成。在毒素(铜蓝蛋白)诱导的脱髓鞘成年小鼠中,口服 GlcNAc 通过驱动髓鞘修复来防止神经轴突损伤。在 MS 患者中,内源性血清 GlcNAc 水平与脱髓鞘和微观结构损伤的影像学测量呈负相关。我们的数据表明,N-聚糖分支和 GlcNAc 是初级髓鞘形成和髓鞘修复的关键调节剂,并表明口服 GlcNAc 可能在 MS 等脱髓鞘疾病中具有神经保护作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f746/7762951/66351d7c3a5d/SB-JBCJ200722F001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验