Pantawane Mangesh V, Ho Yee-Hsien, Robertson William B, Khan Riaz J K, Fick Daniel P, Dahotre Narendra B
Laboratory for Laser Aided Additive and Subtractive Manufacturing, Virtual Center for Advanced Orthopedics, Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle-305310, Denton, Texas 76203-5017, United States.
Australian Institute of Robotics Orthopedics, 2 Centro Avenue, Subiaco, Western Australia 6008, Australia.
ACS Biomater Sci Eng. 2020 Apr 13;6(4):2415-2426. doi: 10.1021/acsbiomaterials.9b01559. Epub 2020 Feb 13.
As a potential osteotomy tool, laser ablation is expected to provide rapid machining of bone, while generating minimal thermal damage (carbonization) and physical attributes within the machined region conducive to healing. As these characteristics vary with laser parameters and modes of laser operation, the clinical trials and in vivo studies render it difficult to explore these aspects for optimization of the laser machining parameters. In light of this, the current work explores various thermal and microstructural aspects of laser-ablated cortical bone in ex vivo study to understand the fundamentals of laser-bone interaction using computational modeling. The study employs the Yb-fiber Nd:YAG laser (λ = 1064 nm) in the continuous wave mode to machine the femur section of bovine bone by a three-dimensional machining approach. The examination involved thermal analysis using differential scanning calorimetry and thermogravimetry, phase analysis using X-ray diffractometry, qualitative analysis using X-ray photoelectron spectroscopy, and microstructural and semiquantitative analysis using scanning electron microscopy equipped with energy-dispersive spectrometry. The mechanism of efficient bone ablation using the Nd:YAG laser was evaluated using the computational thermokinetics outcome. The use of high laser fluence (10.61 J/mm) was observed to be efficient to reduce the residual amorphous carbon in the heat-affected zone while achieving removal of the desired volume of the bone material at a rapid rate. Minimal thermal effects were predicted through computational simulation and were validated with the experimental outcome. In addition, this work reveals the in situ formation of a scaffold-like structure in the laser-machined region which can be conducive during healing.
作为一种潜在的截骨工具,激光消融有望实现对骨骼的快速加工,同时在加工区域产生最小的热损伤(碳化)以及有利于愈合的物理特性。由于这些特性会随激光参数和激光操作模式而变化,临床试验和体内研究难以探究这些方面以优化激光加工参数。鉴于此,当前工作通过体外研究探索激光消融皮质骨的各种热学和微观结构方面,以利用计算模型理解激光与骨骼相互作用的基本原理。该研究采用连续波模式的镱光纤钕:钇铝石榴石激光(λ = 1064 nm),通过三维加工方法对牛骨的股骨部分进行加工。检查包括使用差示扫描量热法和热重分析法进行热分析、使用X射线衍射法进行相分析、使用X射线光电子能谱法进行定性分析以及使用配备能谱仪的扫描电子显微镜进行微观结构和半定量分析。利用计算热动力学结果评估了使用钕:钇铝石榴石激光进行有效骨消融的机制。观察到使用高激光能量密度(10.61 J/mm)能有效减少热影响区中的残余无定形碳,同时快速去除所需体积的骨材料。通过计算模拟预测了最小热效应,并通过实验结果进行了验证。此外,这项工作揭示了在激光加工区域原位形成的支架状结构,这在愈合过程中可能是有益的。