Physical Materials Science and Composite Materials Centre, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
The Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
ACS Biomater Sci Eng. 2020 Mar 9;6(3):1487-1499. doi: 10.1021/acsbiomaterials.9b01857. Epub 2020 Feb 18.
In this study, hybrid composites based on β-alloy Ti-Nb and oxide nanotubes (NTs) have been successfully prepared. NTs of different sizes were grown on Ti-Nb substrates with different Nb contents (5, 25, and 50 wt %) via electrochemical anodization at 30 and 60 V. Scanning electron microscopy imaging revealed that vertically aligned nanotubular structures form on the surface of Ti-Nb alloy substrates and influence Nb content in alloys based on NT length. X-ray diffraction analysis confirmed the formation of the anodized TiO layer and revealed several phases as the Nb content increased, starting with α' for low Nb content (5 wt %), the martensite α″ for intermediate Nb content (25 wt %), and the β phase for the highest Nb content (50 wt %). Nanoindentation testing was used to evaluate the changes in mechanical properties of oxide NTs grown on Ti-Nb alloys with different compositions. NT arrays showed wide variations in Young's modulus and hardness depending upon the anodization voltage and the Nb content. The hardness and Young's modulus strongly correlated with NT morphology and structure. The highly dense morphology formed at a lower anodization voltage results in increased elastic modulus and hardness values compared with the surfaces prepared at higher anodization voltages. The nanostructurization of Ti-Nb surface substrates favored improved surface properties for the enhanced adhesion and proliferation of human mesenchymal stem cells (hMSCs). adhesion, spreading, and proliferation of hMSCs revealed the improved surface properties of the NTs prepared at an anodization voltage of 30 V compared with the NTs prepared at 60 V. Thus it can be concluded that NTs with diameters of ∼50 nm (at 30 V) are more favorable for cell adhesion and growth compared with NTs with diameters of 80 ± 20 nm (at 60 V). The surfaces of Ti-25Nb substrates anodized at 30 V promoted enhanced cell growth, as the further increase in Nb content in Ti-Nb substrate (Ti-50Nb) led to reduced cell proliferation. The application of NTs on Ti-Nb substrates leads to significant reductions in mechanical properties compared with those on the Ti-Nb alloy and improves cell adhesion and proliferation, which is vitally important for successful application in regenerative medicine.
在这项研究中,成功制备了基于β 合金 Ti-Nb 和氧化物纳米管(NTs)的混合复合材料。通过在 30V 和 60V 下电化学阳极氧化,在具有不同 Nb 含量(5wt%、25wt%和 50wt%)的 Ti-Nb 基底上生长了不同尺寸的NTs。扫描电子显微镜成像显示,垂直排列的纳米管状结构在 Ti-Nb 合金基底表面形成,并影响基于 NT 长度的合金中的 Nb 含量。X 射线衍射分析证实了阳极氧化 TiO 层的形成,并随着 Nb 含量的增加显示出几个相,从低 Nb 含量(5wt%)的α'开始,中间 Nb 含量(25wt%)的马氏体α″,以及最高 Nb 含量(50wt%)的β相。纳米压痕测试用于评估不同成分的 Ti-Nb 合金上生长的氧化物 NTs 机械性能的变化。NT 阵列的杨氏模量和硬度随阳极氧化电压和 Nb 含量的变化而有很大的变化。硬度和杨氏模量与 NT 的形态和结构密切相关。在较低的阳极氧化电压下形成的高密度形态导致弹性模量和硬度值增加,与在较高阳极氧化电压下制备的表面相比。Ti-Nb 表面基底的纳米结构化有利于增强人骨髓间充质干细胞(hMSCs)的粘附和增殖,从而提高表面性能。hMSCs 的粘附、铺展和增殖显示出在 30V 下制备的 NTs 比在 60V 下制备的 NTs 具有更好的表面性能。因此可以得出结论,与直径为 80±20nm(在 60V 下)的 NT 相比,直径约为 50nm(在 30V 下)的 NT 更有利于细胞粘附和生长。在 30V 下阳极氧化的 Ti-25Nb 基底表面促进了增强的细胞生长,而 Ti-Nb 基底(Ti-50Nb)中 Nb 含量的进一步增加导致细胞增殖减少。NT 在 Ti-Nb 基底上的应用与在 Ti-Nb 合金上的应用相比,显著降低了机械性能,并改善了细胞粘附和增殖,这对于成功应用于再生医学至关重要。