Suppr超能文献

用作模型系统和替代组织的功能梯度生物材料。

Functionally graded biomaterials for use as model systems and replacement tissues.

作者信息

Lowen Jeremy M, Leach J Kent

机构信息

Department of Biomedical Engineering, University of California, Davis, CA, 95616.

Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817.

出版信息

Adv Funct Mater. 2020 Oct 28;30(44). doi: 10.1002/adfm.201909089. Epub 2020 Mar 4.

Abstract

The heterogeneity of native tissues requires complex materials to provide suitable substitutes for model systems and replacement tissues. Functionally graded materials have the potential to address this challenge by mimicking the gradients in heterogeneous tissues such as porosity, mineralization, and fiber alignment to influence strength, ductility, and cell signaling. Advancements in microfluidics, electrospinning, and 3D printing enable the creation of increasingly complex gradient materials that further our understanding of physiological gradients. The combination of these methods enables rapid prototyping of constructs with high spatial resolution. However, successful translation of these gradients requires both spatial and temporal presentation of cues to model the complexity of native tissues that few materials have demonstrated. This review highlights recent strategies to engineer functionally graded materials for the modeling and repair of heterogeneous tissues, together with a description of how cells interact with various gradients.

摘要

天然组织的异质性需要复杂的材料来为模型系统和替代组织提供合适的替代品。功能梯度材料有潜力通过模拟异质组织中的梯度(如孔隙率、矿化和纤维排列)来应对这一挑战,从而影响强度、延展性和细胞信号传导。微流体技术、静电纺丝和3D打印技术的进步使得能够制造出越来越复杂的梯度材料,加深了我们对生理梯度的理解。这些方法的结合能够实现具有高空间分辨率的构建体的快速原型制作。然而,这些梯度的成功转化需要在空间和时间上呈现线索,以模拟天然组织的复杂性,而很少有材料能够做到这一点。本综述重点介绍了近期为模拟和修复异质组织而设计功能梯度材料的策略,同时描述了细胞如何与各种梯度相互作用。

相似文献

1
Functionally graded biomaterials for use as model systems and replacement tissues.
Adv Funct Mater. 2020 Oct 28;30(44). doi: 10.1002/adfm.201909089. Epub 2020 Mar 4.
3
Fabrication of macromolecular gradients in aligned fiber scaffolds using a combination of in-line blending and air-gap electrospinning.
Acta Biomater. 2017 Jul 1;56:118-128. doi: 10.1016/j.actbio.2016.12.041. Epub 2016 Dec 22.
4
Magnetic fields enable precise spatial control over electrospun fiber alignment for fabricating complex gradient materials.
J Biomed Mater Res A. 2023 Jun;111(6):778-789. doi: 10.1002/jbm.a.37492. Epub 2023 Jan 3.
5
Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment.
bioRxiv. 2023 Jul 10:2023.07.09.548253. doi: 10.1101/2023.07.09.548253.
6
Engineering functionally graded tissue engineering scaffolds.
J Mech Behav Biomed Mater. 2008 Apr;1(2):140-52. doi: 10.1016/j.jmbbm.2007.11.002. Epub 2007 Nov 17.
7
9
Collagen density gradient on three-dimensional printed poly(ε-caprolactone) scaffolds for interface tissue engineering.
J Tissue Eng Regen Med. 2018 Feb;12(2):321-329. doi: 10.1002/term.2457. Epub 2017 Aug 17.
10
Additively manufactured functionally graded biodegradable porous iron.
Acta Biomater. 2019 Sep 15;96:646-661. doi: 10.1016/j.actbio.2019.07.013. Epub 2019 Jul 11.

引用本文的文献

1
Functionalized Annealed Microgels for Spatial Control of Osteogenic and Chondrogenic Differentiation.
Adv Funct Mater. 2024 Jul 24;34(30). doi: 10.1002/adfm.202311017. Epub 2024 Jun 10.
2
Historical evolution, hotspots, and trends in tendon tissue engineering: A bibliometric analysis.
Regen Ther. 2025 May 6;29:600-612. doi: 10.1016/j.reth.2025.04.009. eCollection 2025 Jun.
3
3D bioprinted scaffolds for osteochondral regeneration: advancements and applications.
Mater Today Bio. 2025 May 8;32:101834. doi: 10.1016/j.mtbio.2025.101834. eCollection 2025 Jun.
4
Gradient scaffolds in bone-soft tissue interface engineering: Structural characteristics, fabrication techniques, and emerging trends.
J Orthop Translat. 2025 Jan 28;50:333-353. doi: 10.1016/j.jot.2024.10.015. eCollection 2025 Jan.
5
Rational Fabrication of Functionally-Graded Surfaces for Biological and Biomedical Applications.
Acc Mater Res. 2024 Sep 29;5(12):1507-1519. doi: 10.1021/accountsmr.4c00186. eCollection 2024 Dec 27.
6
Design considerations for digital light processing bioprinters.
Appl Phys Rev. 2024 Sep;11(3):031314. doi: 10.1063/5.0187558.
7
3D printed osteochondral scaffolds: design strategies, present applications and future perspectives.
Front Bioeng Biotechnol. 2024 Feb 15;12:1339916. doi: 10.3389/fbioe.2024.1339916. eCollection 2024.
8
Bioinspired gradient scaffolds for osteochondral tissue engineering.
Exploration (Beijing). 2023 Jul 12;3(4):20210043. doi: 10.1002/EXP.20210043. eCollection 2023 Aug.
9
Multi-material electrospinning: from methods to biomedical applications.
Mater Today Bio. 2023 Jun 23;21:100710. doi: 10.1016/j.mtbio.2023.100710. eCollection 2023 Aug.
10
3D-printed gradient scaffolds for osteochondral defects: Current status and perspectives.
Int J Bioprint. 2023 Mar 31;9(4):724. doi: 10.18063/ijb.724. eCollection 2023.

本文引用的文献

1
Creating Physicochemical Gradients in Modular Microporous Annealed Particle Hydrogels via a Microfluidic Method.
Adv Funct Mater. 2020 Feb 5;30(6). doi: 10.1002/adfm.201907102. Epub 2019 Dec 4.
3
3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1800-1805. doi: 10.1021/acsbiomaterials.6b00288. Epub 2016 Aug 4.
4
Opposing Rigidity-Protein Gradients Reverse Fibroblast Durotaxis.
ACS Biomater Sci Eng. 2015 Aug 10;1(8):621-631. doi: 10.1021/acsbiomaterials.5b00229. Epub 2015 Jul 30.
5
Direct Gradient Photolithography of Photodegradable Hydrogels with Patterned Stiffness Control with Submicrometer Resolution.
ACS Biomater Sci Eng. 2016 Aug 8;2(8):1309-1318. doi: 10.1021/acsbiomaterials.6b00237. Epub 2016 Jul 8.
6
Development of bilayer and trilayer nanofibrous/microfibrous scaffolds for regenerative medicine.
Biomater Sci. 2013 Sep 30;1(9):942-951. doi: 10.1039/c3bm60074b. Epub 2013 Jun 3.
9
Volume Adaptation Controls Stem Cell Mechanotransduction.
ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45520-45530. doi: 10.1021/acsami.9b19770. Epub 2019 Dec 2.
10
Integrating nanofibers with biochemical gradients to investigate physiologically-relevant fibroblast chemotaxis.
Lab Chip. 2019 Nov 7;19(21):3641-3651. doi: 10.1039/c9lc00602h. Epub 2019 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验