Department of Electrical & Computer Engineering Swanson School of EngineeringUniversity of Pittsburgh PA.
Department of Acute & Tertiary Care Nursing University of Pittsburgh PA.
J Am Heart Assoc. 2021 Feb 2;10(3):e017871. doi: 10.1161/JAHA.120.017871. Epub 2021 Jan 17.
Background Classical ST-T waveform changes on standard 12-lead ECG have limited sensitivity in detecting acute coronary syndrome (ACS) in the emergency department. Numerous novel ECG features have been previously proposed to augment clinicians' decision during patient evaluation, yet their clinical utility remains unclear. Methods and Results This was an observational study of consecutive patients evaluated for suspected ACS (Cohort 1 n=745, age 59±17, 42% female, 15% ACS; Cohort 2 n=499, age 59±16, 49% female, 18% ACS). Out of 554 temporal-spatial ECG waveform features, we used domain knowledge to select a subset of 65 physiology-driven features that are mechanistically linked to myocardial ischemia and compared their performance to a subset of 229 data-driven features selected by multiple machine learning algorithms. We then used random forest to select a final subset of 73 most important ECG features that had both data- and physiology-driven basis to ACS prediction and compared their performance to clinical experts. On testing set, a regularized logistic regression classifier based on the 73 hybrid features yielded a stable model that outperformed clinical experts in predicting ACS, with 10% to 29% of cases reclassified correctly. Metrics of nondipolar electrical dispersion (ie, circumferential ischemia), ventricular activation time (ie, transmural conduction delays), QRS and T axes and angles (ie, global remodeling), and principal component analysis ratio of ECG waveforms (ie, regional heterogeneity) played an important role in the improved reclassification performance. Conclusions We identified a subset of novel ECG features predictive of ACS with a fully interpretable model highly adaptable to clinical decision support applications. Registration URL: https://www.clinicaltrials.gov; Unique Identifier: NCT04237688.
标准 12 导联心电图上的经典 ST-T 波形态改变在急诊科检测急性冠状动脉综合征(ACS)的敏感性有限。以前已经提出了许多新的心电图特征来增强临床医生在患者评估期间的决策,但它们的临床实用性仍不清楚。
这是一项连续评估疑似 ACS 患者的观察性研究(队列 1 n=745,年龄 59±17,42%女性,15% ACS;队列 2 n=499,年龄 59±16,49%女性,18% ACS)。在 554 个时空间心电图波形特征中,我们使用领域知识选择了一组 65 个生理驱动特征,这些特征与心肌缺血有机制上的联系,并将其性能与通过多种机器学习算法选择的一组 229 个数据驱动特征进行比较。然后,我们使用随机森林选择了一组最终的 73 个最重要的心电图特征,这些特征既有数据驱动的基础,也有生理驱动的基础,用于 ACS 预测,并将其性能与临床专家进行比较。在测试集中,基于 73 个混合特征的正则化逻辑回归分类器生成了一个稳定的模型,在预测 ACS 方面优于临床专家,有 10%至 29%的病例被正确重新分类。非偶极电分散(即环形缺血)、心室激活时间(即透壁传导延迟)、QRS 和 T 轴和角度(即整体重塑)以及心电图波形的主成分分析比(即区域异质性)等指标在改善重新分类性能方面发挥了重要作用。
我们确定了一组新的心电图特征,这些特征可预测 ACS,且具有完全可解释的模型,非常适合临床决策支持应用。