Romero Selim, Yamamoto Yoh, Baruah Tunna, Zope Rajendra R
Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA.
Phys Chem Chem Phys. 2021 Jan 28;23(3):2406-2418. doi: 10.1039/d0cp06282k.
A recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys., 2019, 151, 214108] when applied to the simplest local density approximation provides a significant improvement over standard Perdew-Zunger SIC (PZSIC) for both equilibrium properties such as total or atomization energies as well as properties involving stretched bond such as barrier heights. The method uses an iso-orbital indicator to identify the single-electron regions. To demonstrate the LSIC method, Zope et al. used the ratio zσ of von Weizsäcker τWσ and total kinetic energy densities τσ, (zσ = τWσ/τσ) as a scaling factor to scale the self-interaction correction. The present work further explores the LSIC method using a ratio of orbital and spin densities as a simpler scaling factor in place of the ratio of kinetic energy densities. We compute a wide array of both, equilibrium and non-equilibrium properties using LSIC and orbital scaling methods using this simple scaling factor and compare them with previously reported results. Our study shows that LSIC with the simple scaling factor performs better than PZSIC, with results comparable to those obtained by LSIC(zσ) for most properties, but has slightly larger errors than LSIC(zσ). Furthermore, we study the binding energies of small water clusters using both scaling factors. Our results show that LSIC with zσ has limitations in predicting the cluster binding energies of weakly bonded systems due to the inability of zσ to distinguish weakly bonded regions from slowly varying density regions. LSIC when used with the density ratio as a scaling factor, on the other hand, provides a good description of water cluster binding energies, thus highlighting the appropriate choice of the iso-orbital indicator.
最近提出的一种局域自相互作用校正(LSIC)方法[佐普等人,《化学物理杂志》,2019年,第151卷,第214108页]在应用于最简单的局域密度近似时,对于诸如总能量或原子化能量等平衡性质以及涉及拉伸键的性质(如势垒高度),相比标准的佩德韦 - 宗格自相互作用校正(PZSIC)有显著改进。该方法使用等轨道指标来识别单电子区域。为了演示LSIC方法,佐普等人使用冯·魏茨泽克τWσ与总动能密度τσ的比值zσ(zσ = τWσ/τσ)作为缩放因子来缩放自相互作用校正。本工作进一步探索LSIC方法,使用轨道密度与自旋密度的比值作为更简单的缩放因子来替代动能密度的比值。我们使用LSIC和轨道缩放方法,利用这个简单的缩放因子计算了广泛的平衡和非平衡性质,并将它们与先前报道的结果进行比较。我们的研究表明,使用简单缩放因子的LSIC比PZSIC表现更好,对于大多数性质,其结果与通过LSIC(zσ)获得的结果相当,但误差比LSIC(zσ)略大。此外,我们使用这两种缩放因子研究了小水团簇的结合能。我们的结果表明,由于zσ无法区分弱键合区域和缓慢变化的密度区域,使用zσ的LSIC在预测弱键合体系的团簇结合能方面存在局限性。另一方面,当将密度比用作缩放因子时,LSIC能很好地描述水团簇的结合能,从而突出了等轨道指标的恰当选择。