Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA.
Physics Department and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.
J Chem Phys. 2019 Dec 7;151(21):214108. doi: 10.1063/1.5129533.
Self-interaction (SI) error, which results when exchange-correlation contributions to the total energy are approximated, limits the reliability of many density functional approximations. The Perdew-Zunger SI correction (PZSIC), when applied in conjunction with the local spin density approximation (LSDA), improves the description of many properties, but overall, this improvement is limited. Here, we propose a modification to PZSIC that uses an iso-orbital indicator to identify regions where local SICs should be applied. Using this local-scaling SIC (LSIC) approach with LSDA, we analyze predictions for a wide range of properties including, for atoms, total energies, ionization potentials, and electron affinities and, for molecules, atomization energies, dissociation energy curves, reaction energies, and reaction barrier heights. LSIC preserves the results of PZSIC-LSDA for properties where it is successful and provides dramatic improvements for many of the other properties studied. Atomization energies calculated using LSIC are better than those of the Perdew, Burke, and Ernzerhof generalized gradient approximation (GGA) and close to those obtained with the strongly constrained and appropriately normed meta-GGA. LSIC also restores the uniform gas limit for the exchange energy that is lost in PZSIC-LSDA. Further performance improvements may be obtained by an appropriate combination or modification of the local scaling factor and the particular density functional approximation.
自相互作用(SI)误差是由于总能量的交换相关贡献被近似而导致的,这限制了许多密度泛函近似的可靠性。当与局域自旋密度近似(LSDA)结合使用时,Perdew-Zunger SI 校正(PZSIC)可以改善许多性质的描述,但总体而言,这种改进是有限的。在这里,我们提出了一种对 PZSIC 的修改,该方法使用等轨道指示符来识别应该应用局域 SIC 的区域。使用 LSDA 与 LSDA 结合使用的局部标度 SIC(LSIC)方法,我们分析了广泛性质的预测,包括原子的总能量、电离势和电子亲合势,以及分子的原子化能、离解能曲线、反应能和反应势垒高度。LSIC 保留了 PZSIC-LSDA 在成功性质上的结果,并为许多其他研究的性质提供了显著的改进。使用 LSIC 计算的原子化能优于 Perdew、Burke 和 Ernzerhof 广义梯度近似(GGA)的原子化能,并且接近于使用强约束和适当归一化的元 GGA 获得的原子化能。LSIC 还恢复了在 PZSIC-LSDA 中丢失的交换能的均匀气体极限。通过适当组合或修改局部标度因子和特定密度泛函近似,可以进一步提高性能。