Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA.
J Chem Phys. 2023 Feb 14;158(6):064114. doi: 10.1063/5.0130436.
Recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys. 151, 214108 (2019)] is a one-electron self-interaction-correction (SIC) method that uses an iso-orbital indicator to apply the SIC at each point in space by scaling the exchange-correlation and Coulomb energy densities. The LSIC method is exact for the one-electron densities, also recovers the uniform electron gas limit of the uncorrected density functional approximation, and reduces to the well-known Perdew-Zunger SIC (PZSIC) method as a special case. This article presents the self-consistent implementation of the LSIC method using the ratio of Weizsäcker and Kohn-Sham kinetic energy densities as an iso-orbital indicator. The atomic forces as well as the forces on the Fermi-Löwdin orbitals are also implemented for the LSIC energy functional. Results show that LSIC with the simplest local spin density functional predicts atomization energies of the AE6 dataset better than some of the most widely used generalized-gradient-approximation (GGA) functional [e.g., Perdew-Burke-Ernzerhof (PBE)] and barrier heights of the BH6 database better than some of the most widely used hybrid functionals (e.g., PBE0 and B3LYP). The LSIC method [a mean absolute error (MAE) of 0.008 Å] predicts bond lengths of a small set of molecules better than the PZSIC-LSDA (MAE 0.042 Å) and LSDA (0.011 Å). This work shows that accurate results can be obtained from the simplest density functional by removing the self-interaction-errors using an appropriately designed SIC method.
最近提出的局部自相互作用修正(LSIC)方法[Zope 等人,J. Chem. Phys. 151, 214108 (2019)]是一种单电子自相互作用修正(SIC)方法,它使用等轨道指示器通过缩放交换相关和库仑能量密度,在空间的每个点上应用 SIC。LSIC 方法对单电子密度是精确的,也恢复了未修正密度泛函近似的均匀电子气极限,并作为特例简化为著名的 Perdew-Zunger SIC(PZSIC)方法。本文提出了使用 Weizsäcker 和 Kohn-Sham 动能密度比作为等轨道指示器的 LSIC 方法的自洽实现。还为 LSIC 能量泛函实现了原子力和 Fermi-Löwdin 轨道上的力。结果表明,使用最简单的局域自旋密度泛函的 LSIC 预测 AE6 数据集的原子化能优于一些最广泛使用的广义梯度近似(GGA)泛函[例如,Perdew-Burke-Ernzerhof (PBE)],并且 BH6 数据库的势垒高度优于一些最广泛使用的混合泛函(例如,PBE0 和 B3LYP)。LSIC 方法[平均绝对误差(MAE)为 0.008 Å]预测一组小分子的键长比 PZSIC-LSDA(MAE 0.042 Å)和 LSDA(0.011 Å)更好。这项工作表明,通过使用适当设计的 SIC 方法消除自相互作用误差,可以从最简单的密度泛函中获得准确的结果。