Romero Selim, Baruah Tunna, Zope Rajendra R
Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, USA.
Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA.
J Chem Phys. 2023 Feb 7;158(5):054305. doi: 10.1063/5.0133999.
Accurate prediction of a spin-state energy difference is crucial for understanding the spin crossover phenomena and is very challenging for density functional approximations, especially for local and semi-local approximations due to delocalization errors. Here, we investigate the effect of the self-interaction error removal from the local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof generalized gradient approximation on the spin-state gaps of Fe(II) complexes with various ligands using recently developed locally scaled self-interaction correction (LSIC) by Zope et al. [J. Chem. Phys. 151, 214108 (2019)]. The LSIC method is exact for one-electron density, recovers the uniform electron gas limit of the underlying functional, and approaches the well-known Perdew-Zunger self-interaction correction (PZSIC) as a particular case when the scaling factor is set to unity. Our results, when compared with reference diffusion Monte Carlo results, show that the PZSIC method significantly overestimates spin-state gaps favoring low spin states for all ligands and does not improve upon density functional approximations. The perturbative LSIC-LSDA using PZSIC densities significantly improves the gaps with a mean absolute error of 0.51 eV but slightly overcorrects for the stronger CO ligands. The quasi-self-consistent LSIC-LSDA, such as coupled-cluster single double and perturbative triple [CCSD(T)], gives a correct sign of spin-state gaps for all ligands with a mean absolute error of 0.56 eV, comparable to that of CCSD(T) (0.49 eV).
准确预测自旋态能量差对于理解自旋交叉现象至关重要,而对于密度泛函近似来说极具挑战性,尤其是对于局部和半局部近似,因为存在离域误差。在此,我们使用佐普等人最近开发的局部缩放自相互作用校正(LSIC)[《化学物理杂志》151, 214108 (2019)],研究从局部自旋密度近似(LSDA)和佩德韦-伯克-恩泽尔霍夫广义梯度近似中去除自相互作用误差对具有各种配体的Fe(II)配合物自旋态能隙的影响。LSIC方法对于单电子密度是精确的,恢复了基础泛函的均匀电子气极限,并且当缩放因子设为1时,作为一种特殊情况趋近于著名的佩德韦-曾格自相互作用校正(PZSIC)。与参考扩散蒙特卡罗结果相比,我们的结果表明,PZSIC方法显著高估了所有配体有利于低自旋态的自旋态能隙,并且在密度泛函近似方面没有改进。使用PZSIC密度的微扰LSIC-LSDA显著改善了能隙,平均绝对误差为0.51 eV,但对于较强的CO配体略有过度校正。准自洽的LSIC-LSDA,如耦合簇单双激发和微扰三激发[CCSD(T)],给出了所有配体自旋态能隙的正确符号,平均绝对误差为0.56 eV,与CCSD(T)(0.49 eV)相当。