Suppr超能文献

确定用于 3D 放射治疗中自动射束孔径定义的最佳深度学习架构和参数。

Identifying the optimal deep learning architecture and parameters for automatic beam aperture definition in 3D radiotherapy.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

University of California San Diego, San Diego, California, USA.

出版信息

J Appl Clin Med Phys. 2023 Dec;24(12):e14131. doi: 10.1002/acm2.14131. Epub 2023 Sep 5.

Abstract

PURPOSE

Two-dimensional radiotherapy is often used to treat cervical cancer in low- and middle-income countries, but treatment planning can be challenging and time-consuming. Neural networks offer the potential to greatly decrease planning time through automation, but the impact of the wide range of hyperparameters to be set during training on model accuracy has not been exhaustively investigated. In the current study, we evaluated the effect of several convolutional neural network architectures and hyperparameters on 2D radiotherapy treatment field delineation.

METHODS

Six commonly used deep learning architectures were trained to delineate four-field box apertures on digitally reconstructed radiographs for cervical cancer radiotherapy. A comprehensive search of optimal hyperparameters for all models was conducted by varying the initial learning rate, image normalization methods, and (when appropriate) convolutional kernel size, the number of learnable parameters via network depth and the number of feature maps per convolution, and nonlinear activation functions. This yielded over 1700 unique models, which were all trained until performance converged and then tested on a separate dataset.

RESULTS

Of all hyperparameters, the choice of initial learning rate was most consistently significant for improved performance on the test set, with all top-performing models using learning rates of 0.0001. The optimal image normalization was not consistent across architectures. High overlap (mean Dice similarity coefficient = 0.98) and surface distance agreement (mean surface distance < 2 mm) were achieved between the treatment field apertures for all architectures using the identified best hyperparameters. Overlap Dice similarity coefficient (DSC) and distance metrics (mean surface distance and Hausdorff distance) indicated that DeepLabv3+ and D-LinkNet architectures were least sensitive to initial hyperparameter selection.

CONCLUSION

DeepLabv3+ and D-LinkNet are most robust to initial hyperparameter selection. Learning rate, nonlinear activation function, and kernel size are also important hyperparameters for improving performance.

摘要

目的

二维放射治疗常用于中低收入国家的宫颈癌治疗,但治疗计划可能具有挑战性且耗时。神经网络通过自动化具有极大减少计划时间的潜力,但在训练过程中设置的大量超参数对模型准确性的影响尚未得到详尽研究。在目前的研究中,我们评估了几种卷积神经网络架构和超参数对二维放射治疗野勾画的影响。

方法

训练 6 种常用的深度学习架构,以勾画宫颈癌放射治疗的四野盒野。通过改变初始学习率、图像归一化方法以及(在适当情况下)卷积核大小、通过网络深度和每个卷积的特征图数量可学习的参数数量以及非线性激活函数,对所有模型的最优超参数进行了全面搜索。这产生了超过 1700 个独特的模型,所有模型都被训练到性能收敛,然后在一个独立的数据集上进行测试。

结果

在所研究的所有超参数中,初始学习率的选择对测试集性能的提高最为重要,所有表现最佳的模型都使用了 0.0001 的学习率。最优图像归一化方法因架构而异。使用所确定的最佳超参数,所有架构的治疗野开口之间均具有较高的重叠(平均 Dice 相似系数为 0.98)和表面距离一致性(平均表面距离<2mm)。重叠 Dice 相似系数(DSC)和距离指标(平均表面距离和 Hausdorff 距离)表明,DeepLabv3+和 D-LinkNet 架构对初始超参数选择最不敏感。

结论

DeepLabv3+和 D-LinkNet 对初始超参数选择最稳健。学习率、非线性激活函数和核大小也是提高性能的重要超参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0409/10691634/f860b45c9385/ACM2-24-e14131-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验