Suppr超能文献

基于拉普拉斯-贝尔特拉米特征函数水平集的脑回分析方法。

A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets.

机构信息

School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia; The Australian e-Health Research Centre, CSIRO, Melbourne, Australia.

Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA; Department of Neurosciences, University of Turin, Italy.

出版信息

Neuroimage. 2021 Apr 1;229:117751. doi: 10.1016/j.neuroimage.2021.117751. Epub 2021 Jan 15.

Abstract

An accurate measure of the complexity of patterns of cortical folding or gyrification is necessary for understanding normal brain development and neurodevelopmental disorders. Conventional gyrification indices (GIs) are calculated based on surface curvature (curvature-based GI) or an outer hull surface of the cortex (outer surface-based GI). The latter is dependent on the definition of the outer hull surface and a corresponding function between surfaces. In the present study, we propose the Laplace Beltrami-based gyrification index (LB-GI). This is a new curvature-based local GI computed using the first three Laplace Beltrami eigenfunction level sets. As with outer surface-based GI methods, this method is based on the hypothesis that gyrification stems from a flat surface during development. However, instead of quantifying gyrification with reference to corresponding points on an outer hull surface, LB-GI quantifies the gyrification at each point on the cortical surface with reference to their surrounding gyral points, overcoming several shortcomings of existing methods. The LB-GI was applied to investigate the cortical maturation profile of the human brain from preschool to early adulthood using the PING database. The results revealed more detail in patterns of cortical folding than conventional curvature-based methods, especially on frontal and posterior tips of the brain, such as the frontal pole, lateral occipital, lateral cuneus, and lingual. Negative associations of cortical folding with age were observed at cortical regions, including bilateral lingual, lateral occipital, precentral gyrus, postcentral gyrus, and superior frontal gyrus. The results also indicated positive significant associations between age and the LB-GI of bilateral insula, the medial orbitofrontal, frontal pole and rostral anterior cingulate regions. It is anticipated that the LB-GI will be advantageous in providing further insights in the understanding of brain development and degeneration in large clinical neuroimaging studies.

摘要

准确衡量皮质折叠或脑回模式的复杂性对于理解正常大脑发育和神经发育障碍是必要的。传统的脑回指数(GI)是基于表面曲率(基于曲率的 GI)或皮质的外表面(基于外表面的 GI)计算的。后者依赖于外表面的定义和相应的曲面之间的函数。在本研究中,我们提出了基于拉普拉斯 - 贝尔特拉米的脑回指数(LB-GI)。这是一种新的基于曲率的局部 GI,使用前三个拉普拉斯 - 贝尔特拉米特征函数水平集计算。与基于外表面的 GI 方法一样,该方法基于脑回是从发育过程中的平坦表面开始的假设。然而,LB-GI 不是通过参考外表面上的对应点来量化脑回,而是通过参考其周围的脑回点来量化皮质表面上的每个点的脑回,克服了现有方法的几个缺点。LB-GI 被应用于使用 PING 数据库研究从学前到早期成年的人类大脑的皮质成熟谱。结果显示,与传统的基于曲率的方法相比,该方法在大脑的额极、外侧枕叶、外侧楔叶和舌状回等脑回模式上显示出更多的细节。在包括双侧舌状回、外侧枕叶、中央前回、中央后回和额上回在内的皮质区域,皮质折叠与年龄呈负相关。结果还表明,双侧岛叶、内侧眶额回、额极和额前扣带回区域的年龄与 LB-GI 之间存在显著的正相关。预计 LB-GI 将有助于在大型临床神经影像学研究中进一步深入了解大脑发育和退化。

相似文献

4
Local Spectral Analysis of the Cerebral Cortex: New Gyrification Indices.大脑皮质局部频谱分析:新的脑回指数。
IEEE Trans Med Imaging. 2017 Mar;36(3):838-848. doi: 10.1109/TMI.2016.2633393. Epub 2016 Nov 29.
5
A cortical shape-adaptive approach to local gyrification index.皮质形态自适应方法局部脑回指数。
Med Image Anal. 2018 Aug;48:244-258. doi: 10.1016/j.media.2018.06.009. Epub 2018 Jun 28.
6
Altered structural cerebral cortex in children with Tourette syndrome.抽动秽语综合征患儿大脑皮质结构改变。
Eur J Radiol. 2020 Aug;129:109119. doi: 10.1016/j.ejrad.2020.109119. Epub 2020 Jun 6.
7
Cortical Morphometry in the Psychosis Risk Period: A Comprehensive Perspective of Surface Features.精神病风险期的皮质形态测量学:表面特征的综合视角。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 May;4(5):434-443. doi: 10.1016/j.bpsc.2018.01.003. Epub 2018 Jan 31.
9
Longitudinal mapping of cortical surface changes in Huntington's Disease.亨廷顿舞蹈症皮质表面变化的纵向映射
Brain Imaging Behav. 2022 Jun;16(3):1381-1391. doi: 10.1007/s11682-021-00625-2. Epub 2022 Jan 14.

本文引用的文献

4
Cortical gyrification in relation to age and cognition in older adults.老年人皮质脑回与年龄和认知的关系。
Neuroimage. 2020 May 15;212:116637. doi: 10.1016/j.neuroimage.2020.116637. Epub 2020 Feb 17.
6
On early brain folding patterns using biomechanical growth modeling.关于使用生物力学生长模型的早期脑折叠模式
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:146-149. doi: 10.1109/EMBC.2019.8856670.
9
A cortical shape-adaptive approach to local gyrification index.皮质形态自适应方法局部脑回指数。
Med Image Anal. 2018 Aug;48:244-258. doi: 10.1016/j.media.2018.06.009. Epub 2018 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验