Suppr超能文献

载甲川蓝光敏剂的超小聚乙二醇化和靶向核壳硅纳米粒子。

Ultrasmall PEGylated and Targeted Core-Shell Silica Nanoparticles Carrying Methylene Blue Photosensitizer.

出版信息

ACS Biomater Sci Eng. 2020 Jan 13;6(1):256-264. doi: 10.1021/acsbiomaterials.9b01359. Epub 2019 Dec 5.

Abstract

Photodynamic therapy (PDT) presents an alternative noninvasive therapeutic modality for the treatment of cancer and other diseases. PDT relies on cytotoxic singlet oxygen (reactive oxygen species or ROS) that is locally generated through energy transfer between a photosensitizer (PS) and molecularly dissolved triplet oxygen. While a number of nanoparticle-based PS vehicles have been described, because of their beneficial and proven biodistribution and pharmacokinetic profiles, ultrasmall nanoparticles with diameters below 10 nm are particularly promising. Here, we investigate two different particle designs deviating from ultrasmall poly(ethylene glycol)-coated (PEGylated) fluorescent core-shell silica nanoparticles referred to as Cornell prime dots (C' dots) by replacing the fluorescent dye with a photosensitizer (psC' dots), here the methylene blue (MB) derivate MB2. In the first approach (design 1), MB2 is encapsulated into the matrix of the silica core, while in the second approach (design 2), MB2 is grafted onto the silica core surface in between chains of the sterically stabilizing poly(ethylene glycol) (PEG) corona. We compare both cases with regard to their singlet oxygen quantum yields, Φ, with the effective Φ per particle reaching 111 ± 3 and 161 ± 5% for designs 1 and 2, respectively, substantially exceeding single MB2 molecule performance. Encapsulation significantly improves PS photostability, while surface conjugation diminishes it, relative to free MB2. Finally, we show that both particle designs allow functionalization with a targeting peptide, cyclo(Arg-Gly-Asp-D-Tyr-Cys) [c(RGDyC)]. Results suggest that psC' dots are a promising targeted platform for PDT applications, e.g. in oncology, that may combine colloidal stability, efficient renal clearance limiting off-target accumulation, targeted delivery to sites of disease, and effective ROS generation maximizing therapeutic efficacy.

摘要

光动力疗法 (PDT) 为癌症和其他疾病的治疗提供了一种非侵入性的替代治疗方式。PDT 依赖于细胞毒性单线态氧 (活性氧或 ROS),这是通过光敏剂 (PS) 和分子溶解的三重态氧之间的能量转移在局部产生的。虽然已经描述了许多基于纳米粒子的 PS 载体,但由于其有益且经过验证的生物分布和药代动力学特性,直径小于 10nm 的超小纳米粒子尤其有前途。在这里,我们研究了两种不同的粒子设计,它们偏离了超小聚乙二醇化 (PEGylated) 荧光核壳二氧化硅纳米粒子,称为康奈尔 prime dots (C' dots),通过用光敏剂 (psC' dots) 取代荧光染料,这里是亚甲蓝 (MB) 衍生物 MB2。在第一种方法 (设计 1) 中,MB2 被包裹在二氧化硅核的基质中,而在第二种方法 (设计 2) 中,MB2 被接枝到二氧化硅核表面聚乙二醇 (PEG) 冠层链之间。我们比较了这两种情况的单线态氧量子产率 Φ,对于设计 1 和 2,有效 Φ 分别达到 111±3%和 161±5%,大大超过了单个 MB2 分子的性能。与游离 MB2 相比,封装显著提高了 PS 的光稳定性,而表面接枝则降低了 PS 的光稳定性。最后,我们表明,两种粒子设计都允许用靶向肽环 (Arg-Gly-Asp-D-Tyr-Cys) [c(RGDyC)] 进行功能化。结果表明,psC' dots 是 PDT 应用的有前途的靶向平台,例如在肿瘤学中,它可以结合胶体稳定性、有效的肾脏清除限制非靶标积累、靶向递送到疾病部位以及有效生成 ROS 以最大限度地提高治疗效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验