Suppr超能文献

磁性、载抗菌纳米粒子在感染性生物膜中的均匀分布增强了生物膜杀伤效果。

Homogeneous Distribution of Magnetic, Antimicrobial-Carrying Nanoparticles through an Infectious Biofilm Enhances Biofilm-Killing Efficacy.

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai road 199, Suzhou 215123, P.R. China.

Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

出版信息

ACS Biomater Sci Eng. 2020 Jan 13;6(1):205-212. doi: 10.1021/acsbiomaterials.9b01425. Epub 2019 Dec 10.

Abstract

Magnetic, antimicrobial-carrying nanoparticles provide a promising, new and direly needed antimicrobial strategy against infectious bacterial biofilms. Penetration and accumulation of antimicrobials over the thickness of a biofilm is a for effective killing of biofilm inhabitants. Simplified schematics on magnetic-targeting always picture homogeneous distribution of magnetic, antimicrobial-carrying nanoparticles over the thickness of biofilms, but this is not easy to achieve. Here, gentamicin-carrying magnetic nanoparticles (MNPs-G) were synthesized through gentamicin conjugation with iron-oxide nanoparticles and used to demonstrate the importance of their homogeneous distribution over the thickness of a biofilm. Diameters of MNPs-G were around 60 nm, well below the limit for reticuloendothelial rejection. MNPs-G killed most ESKAPE-panel pathogens, including , equally as well as gentamicin in solution. MNPs-G distribution in a biofilm was dependent on magnetic-field exposure time and most homogeneous after 5 min magnetic-field exposure. Exposure of biofilms to MNPs-G with 5 min magnetic-field exposure yielded not only homogeneous distribution of MNPs-G, but concurrently better staphylococcal killing at all depths than that of MNPs, gentamicin in solution, and MNPs-G, or after other magnet-field exposure times. In summary, homogeneous distribution of gentamicin-carrying magnetic nanoparticles over the thickness of a staphylococcal biofilm was essential for killing biofilm inhabitants and required optimizing of the magnetic-field exposure time. This conclusion is important for further successful development of magnetic, antimicrobial-carrying nanoparticles toward clinical application.

摘要

磁性载抗菌纳米颗粒为对抗感染性细菌生物膜提供了一种有前景的、新的且迫切需要的抗菌策略。抗菌剂在生物膜厚度上的渗透和积累是有效杀死生物膜居民的关键。磁性靶向的简化示意图总是描绘出磁性载抗菌纳米颗粒在生物膜厚度上的均匀分布,但这并不容易实现。在这里,通过将庆大霉素与氧化铁纳米颗粒偶联合成了载庆大霉素的磁性纳米颗粒(MNPs-G),并将其用于证明其在生物膜厚度上均匀分布的重要性。MNPs-G 的直径约为 60nm,远低于网状内皮系统排斥的极限。MNPs-G 杀死了大多数 ESKAPE 面板病原体,包括金黄色葡萄球菌,与溶液中的庆大霉素一样有效。MNPs-G 在生物膜中的分布取决于磁场暴露时间,在磁场暴露 5 分钟后最均匀。将生物膜暴露于磁场 5 分钟的 MNPs-G 不仅产生了 MNPs-G 的均匀分布,而且在所有深度处的金黄色葡萄球菌杀灭效果均优于 MNPs、溶液中的庆大霉素和 MNPs-G,或在其他磁场暴露时间后。总之,在金黄色葡萄球菌生物膜厚度上均匀分布载有庆大霉素的磁性纳米颗粒对于杀死生物膜居民是至关重要的,需要优化磁场暴露时间。这一结论对于磁性载抗菌纳米颗粒进一步成功开发并应用于临床具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验