Suppr超能文献

载酶载药 Ag-FeO@MoS MNPs 纳米复合材料破坏生物膜并根除细菌。

Disrupting biofilm and eradicating bacteria by Ag-FeO@MoS MNPs nanocomposite carrying enzyme and antibiotics.

机构信息

Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.

Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.

出版信息

J Control Release. 2022 Dec;352:98-120. doi: 10.1016/j.jconrel.2022.10.009. Epub 2022 Oct 19.

Abstract

In this study, novel multilayered magnetic nanoparticles (ML-MNPs) loaded with DNase and/or vancomycin (Vanc) were fabricated for eliminating multispecies biofilms. Iron-oxide MNPs (IO-core) (500-800 nm) were synthesized via co-precipitation; further, the IO-core was coated with heavy-metal-based layers (Ag and MoS NPs) using solvent evaporation. DNase and Vanc were loaded onto the outermost layer of the ML-MNP formed by nanoporous MoS NPs through physical deposition and adsorption. The biofilms of S. mutans or E. faecalis (or both) were formed in a brain-heart-infusion broth (BHI) for 3 days, followed by treatment with ML-MNPs for 24 h. The results revealed that coatings of Ag (200 nm) and ultrasmall MoS (20 nm) were assembled as outer layers of ML-MNPs successfully, and they formed Ag-FeO@MoS MNPs (3-5 μm). The DNase-Vanc-loaded MNPs caused nanochannels digging and resulted in the enhanced penetration of MNPs towards the bottom layers of biofilm, which resulted in a decrease in the thickness of the 72-h biofilm from 48 to 58 μm to 0-4 μm. The sustained release of Vanc caused a synergistic bacterial killing up to 96%-100%. The heavy-metal-based layers of MNPs act as nanozymes to interfere with bacterial metabolism and proliferation, which adversely affects biofilm integrity. Further, loading DNase/Vanc onto the nanoporous-MoS-layer of ML-MNPs promoted nanochannel creation through the biofilm. Therefore, DNase-and Vanc-loaded ML-MNPs exhibited potent effects on biofilm disruption and bacterial killing.

摘要

在这项研究中,制备了负载 DNA 酶和/或万古霉素(Vanc)的新型多层磁性纳米颗粒(ML-MNPs),以消除多物种生物膜。通过共沉淀合成了氧化铁 MNPs(IO-核)(500-800nm);然后,通过溶剂蒸发在 IO-核上涂覆重金属基层(Ag 和 MoS NPs)。通过物理沉积和吸附,将 DNA 酶和万古霉素加载到由纳米多孔 MoS NPs 形成的 ML-MNP 的最外层。在脑心浸液(BHI)中形成 S. mutans 或 E. faecalis(或两者)的生物膜 3 天,然后用 ML-MNPs 处理 24 小时。结果表明,成功地将 200nm 的 Ag 和 20nm 的 ultrasmall MoS 涂覆为 ML-MNPs 的外层,并形成了 Ag-FeO@MoS MNPs(3-5μm)。负载 DNA 酶-万古霉素的 MNPs 导致纳米通道挖掘,并导致 MNPs 更深入地渗透到生物膜的底层,从而将 72 小时生物膜的厚度从 48 至 58μm 减少至 0-4μm。万古霉素的持续释放导致协同杀菌率高达 96%-100%。MNPs 的重金属层作为纳米酶干扰细菌代谢和增殖,从而破坏生物膜的完整性。此外,将 DNA 酶/万古霉素负载到 ML-MNPs 的纳米多孔-MoS 层上,通过生物膜促进纳米通道的形成。因此,负载 DNA 酶和万古霉素的 ML-MNPs 对生物膜破坏和杀菌具有很强的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验