Aziz Tariq, Wei Shijing, Sun Yun, Ma Lai-Peng, Pei Songfeng, Dong Shichao, Ren Wencai, Liu Qi, Cheng Hui-Ming, Sun Dong-Ming
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.
Frontier Institute of Chip and System, Fudan University, 2005 Shonghu Road, Shanghai 200433, P. R. China.
Nanoscale. 2021 Feb 4;13(4):2448-2455. doi: 10.1039/d0nr07888c.
The conventional strategy of fabricating resistive random access memory (RRAM) based on graphene oxide is limited to a resistive layer with homogeneous oxidation, and the switching behavior relies on its redox reaction with an active metal electrode, so the obtained RRAMs are typically plagued by inferior performance and reliability. Here, we report a strategy to develop high-performance flexible RRAMs by using graphene oxidized with a perpendicular oxidation gradient as the resistive layer. In contrast to a homogeneous oxide, this graphene together with its distinctive inter-layer oxygen diffusion path enables excellent oxygen ion/vacancy diffusion. Without an interfacial redox reaction, oxygen ions can diffuse to form conductive filaments with two inert metal electrodes by applying a bias voltage. Compared with state-of-the-art graphene oxide RRAMs, these graphene RRAMs have shown superior performance including a high on-off current ratio of ∼105, long-term retention of ∼106 s, reproducibility over 104 cycles and long-term flexibility at a bending strain of 0.6%, indicating that the material has great potential in wearable smart data-storage devices.
基于氧化石墨烯制造电阻式随机存取存储器(RRAM)的传统策略仅限于具有均匀氧化的电阻层,且开关行为依赖于其与活性金属电极的氧化还原反应,因此所获得的RRAM通常存在性能和可靠性较差的问题。在此,我们报告一种通过使用具有垂直氧化梯度的氧化石墨烯作为电阻层来开发高性能柔性RRAM的策略。与均匀氧化物不同,这种石墨烯及其独特的层间氧扩散路径能够实现优异的氧离子/空位扩散。在没有界面氧化还原反应的情况下,通过施加偏置电压,氧离子可以扩散并与两个惰性金属电极形成导电细丝。与现有技术的氧化石墨烯RRAM相比,这些石墨烯RRAM表现出卓越的性能,包括高达约105的开/关电流比、约106秒的长期保持性、超过104次循环的可重复性以及在0.6%弯曲应变下的长期柔韧性,表明该材料在可穿戴智能数据存储设备中具有巨大潜力。