Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States.
Division of Research and Development, Jigsaw Bio Solutions Private Limited, No. 87, 4th Floor, Mundhra Chambers, 22nd Main, Banashankari 2nd Stage, Bangalore 560070, Karnataka, India.
Anal Chem. 2021 Feb 2;93(4):2097-2105. doi: 10.1021/acs.analchem.0c03847. Epub 2021 Jan 19.
In many countries targeting malaria elimination, persistent malaria infections can have parasite loads significantly below the lower limit of detection (LLOD) of standard diagnostic techniques, making them difficult to identify and treat. The most sensitive diagnostic methods involve amplification and detection of DNA by polymerase chain reaction (PCR), which requires expensive thermal cycling equipment and is difficult to deploy in resource-limited settings. Isothermal DNA amplification assays have been developed, but they require complex primer design, resulting in high nonspecific amplification, and show a decrease in sensitivity than PCR methods. Here, we have used a computational approach to design a novel isothermal amplification assay with a simple primer design to amplify DNA with analytical sensitivity comparable to PCR. We have identified short DNA sequences repeated throughout the parasite genome to be used as primers for DNA amplification and demonstrated that these primers can be used, without modification, to isothermally amplify parasite DNA via strand displacement amplification. Our novel assay shows a LLOD of ∼1 parasite/μL within a 30 min amplification time. The assay was demonstrated with clinical samples using patient blood and saliva. We further characterized the assay using direct amplicon next-generation sequencing and modified the assay to work with a visual readout. The technique developed here achieves similar analytical sensitivity to current gold standard PCR assays requiring a fraction of time and resources for PCR. This highly sensitive isothermal assay can be more easily adapted to field settings, making it a potentially useful tool for malaria elimination.
在许多国家,针对消除疟疾的目标,持续的疟疾感染可能导致寄生虫负荷明显低于标准诊断技术的下限检测值(LLOD),使得它们难以识别和治疗。最敏感的诊断方法涉及聚合酶链反应(PCR)对 DNA 的扩增和检测,这需要昂贵的热循环设备,并且难以在资源有限的环境中部署。已经开发了等温 DNA 扩增检测方法,但它们需要复杂的引物设计,导致非特异性扩增增加,并显示出比 PCR 方法灵敏度降低的情况。在这里,我们使用计算方法设计了一种新型的等温扩增检测方法,该方法具有简单的引物设计,可扩增 DNA,其分析灵敏度可与 PCR 相媲美。我们已经确定了寄生虫基因组中重复的短 DNA 序列,用作 DNA 扩增的引物,并证明这些引物可以不经修饰即可通过链置换扩增来等温扩增寄生虫 DNA。我们的新型检测方法在 30 分钟的扩增时间内的 LLOD 约为 1 个寄生虫/μL。该检测方法使用患者血液和唾液的临床样本进行了验证。我们进一步使用直接扩增子下一代测序对该检测方法进行了表征,并对其进行了修改以用于可视化读数。这里开发的技术达到了与当前金标准 PCR 检测方法相似的分析灵敏度,所需的时间和资源仅为 PCR 的一小部分。这种高灵敏度的等温检测方法可以更容易地适应现场环境,因此可能是消除疟疾的有用工具。