Department of Neurology, Epilepsy Unit, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.
Paris Brain Institute, ICM (INSERM-U1127, CNRS-UMR7225), Paris, France.
Epilepsia. 2021 Feb;62(2):e42-e47. doi: 10.1111/epi.16804. Epub 2021 Jan 19.
A reliable identification of a high-risk state for upcoming seizures may allow for preemptive treatment and improve the quality of patients' lives. We evaluated the ability of prodromal symptoms to predict preictal states using a machine learning (ML) approach. Twenty-four patients with drug-resistant epilepsy were admitted for continuous video-electroencephalographic monitoring and filled out a daily four-point questionnaire on prodromal symptoms. Data were then classified into (1) a preictal group for questionnaires completed in a 24-h period prior to at least one seizure (n = 58) and (2) an interictal group for questionnaires completed in a 24-h period without seizures (n = 190). Our prediction model was based on a support vector machine classifier and compared to a Fisher's linear classifier. The combination of all the prodromal symptoms yielded a good prediction performance (area under the curve [AUC] = .72, 95% confidence interval [CI] = .61-.81). This performance was significantly enhanced by selecting a subset of the most relevant symptoms (AUC = .80, 95% CI = .69-.88). In comparison, the linear classifier systematically failed (AUCs < .6). Our findings indicate that the ML analysis of prodromal symptoms is a promising approach to identifying preictal states prior to seizures. This could pave the way for development of clinical strategies in seizure prevention and even a noninvasive alarm system.
可靠地识别即将发生癫痫的高危状态可能允许进行预防性治疗,并提高患者的生活质量。我们使用机器学习 (ML) 方法评估前驱症状预测癫痫发作状态的能力。24 名耐药性癫痫患者入院进行连续视频脑电图监测,并填写每日四点前驱症状问卷。然后将数据分为(1)在至少一次癫痫发作前 24 小时内完成的问卷的发作前组(n = 58)和(2)在无癫痫发作的 24 小时内完成的问卷的发作间期组(n = 190)。我们的预测模型基于支持向量机分类器,并与 Fisher 线性分类器进行了比较。所有前驱症状的组合产生了良好的预测性能(曲线下面积 [AUC] 为.72,95%置信区间 [CI] 为.61-.81)。通过选择最相关症状的子集,性能得到显著提高(AUC 为.80,95%CI 为.69-.88)。相比之下,线性分类器系统地失败(AUCs <.6)。我们的发现表明,前驱症状的 ML 分析是一种有前途的方法,可以在癫痫发作前识别癫痫发作状态。这可能为开发预防癫痫发作的临床策略甚至非侵入性报警系统铺平道路。