Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461.
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461;
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2017590118.
Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation-which relies on sparse GC firing-and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via α signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation.
兴奋性神经网络不稳定。在海马体中,兴奋性苔藓细胞 (MCs) 从齿状回颗粒细胞 (GCs) 接收强烈的兴奋性输入,并投射回 GCs 的近端树突。通过靶向海马体背腹轴上的同侧和对侧齿状回 (DG),MCs 形成广泛的兴奋性回传回路 (GC-MC-GC),其失调可促进癫痫发作。我们最近报道,MC 活动的一种生理相关模式可诱导 MC-GC 传递的强形式的突触前长时程增强 (LTP),从而增强 GC 的输出。如果不加控制,这种 LTP 可能会干扰 DG 依赖性学习,例如依赖稀疏 GC 放电的模式分离,甚至可能促进癫痫活动。有趣的是,MC 轴突表现出高表达水平的 1 型大麻素受体 (CB1Rs),但其在 MC-GC 突触中的作用尚不清楚。使用啮齿动物海马切片,我们报告说,组成型激活的 CB1Rs,推测通过 βγ 亚基,选择性地抑制 MC 对 GCs 的输入,但不抑制 MC 对抑制性中间神经元的输入或对 GCs 的 CB1R 敏感的抑制性输入。紧张的 CB1R 活性也抑制 LTP 和 GC 输出。此外,GC 中的内源性大麻素短暂释放以两种机制上不同的方式抑制 MC-GC LTP:在诱导过程中通过 βγ 信号传导,以及在诱导过程中通过 α 信号传导,形成一种突触前的变构性。最后,体内单次暴露于外源性大麻素足以诱导这种突触前变构性。通过抑制兴奋性传递和可塑性,MC 轴突末梢的紧张和相发性 CB1R 活性可能维持 DG 的稀疏特性,并防止失控兴奋。