Suppr超能文献

深度学习在春小麦育种计划中预测复杂性状的应用

Deep Learning for Predicting Complex Traits in Spring Wheat Breeding Program.

作者信息

Sandhu Karansher S, Lozada Dennis N, Zhang Zhiwu, Pumphrey Michael O, Carter Arron H

机构信息

Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States.

Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States.

出版信息

Front Plant Sci. 2021 Jan 5;11:613325. doi: 10.3389/fpls.2020.613325. eCollection 2020.

Abstract

Genomic selection (GS) is transforming the field of plant breeding and implementing models that improve prediction accuracy for complex traits is needed. Analytical methods for complex datasets traditionally used in other disciplines represent an opportunity for improving prediction accuracy in GS. Deep learning (DL) is a branch of machine learning (ML) which focuses on densely connected networks using artificial neural networks for training the models. The objective of this research was to evaluate the potential of DL models in the Washington State University spring wheat breeding program. We compared the performance of two DL algorithms, namely multilayer perceptron (MLP) and convolutional neural network (CNN), with ridge regression best linear unbiased predictor (rrBLUP), a commonly used GS model. The dataset consisted of 650 recombinant inbred lines (RILs) from a spring wheat nested association mapping (NAM) population planted from 2014-2016 growing seasons. We predicted five different quantitative traits with varying genetic architecture using cross-validations (CVs), independent validations, and different sets of SNP markers. Hyperparameters were optimized for DL models by lowering the root mean square in the training set, avoiding model overfitting using dropout and regularization. DL models gave 0 to 5% higher prediction accuracy than rrBLUP model under both cross and independent validations for all five traits used in this study. Furthermore, MLP produces 5% higher prediction accuracy than CNN for grain yield and grain protein content. Altogether, DL approaches obtained better prediction accuracy for each trait, and should be incorporated into a plant breeder's toolkit for use in large scale breeding programs.

摘要

基因组选择(GS)正在改变植物育种领域,因此需要实施能够提高复杂性状预测准确性的模型。传统上在其他学科中使用的复杂数据集分析方法为提高GS的预测准确性提供了契机。深度学习(DL)是机器学习(ML)的一个分支,它专注于使用人工神经网络进行密集连接的网络来训练模型。本研究的目的是评估DL模型在华盛顿州立大学春小麦育种计划中的潜力。我们将两种DL算法,即多层感知器(MLP)和卷积神经网络(CNN)的性能与常用的GS模型——岭回归最佳线性无偏预测器(rrBLUP)进行了比较。数据集由2014 - 2016年生长季种植的春小麦巢式关联作图(NAM)群体中的650个重组自交系(RIL)组成。我们使用交叉验证(CV)、独立验证和不同的单核苷酸多态性(SNP)标记集预测了五个具有不同遗传结构的定量性状。通过降低训练集中的均方根对DL模型的超参数进行了优化,并使用随机失活和正则化避免模型过度拟合。在本研究中使用的所有五个性状的交叉验证和独立验证中,DL模型的预测准确性比rrBLUP模型高0%至5%。此外,对于籽粒产量和籽粒蛋白质含量,MLP的预测准确性比CNN高5%。总体而言,DL方法对每个性状都获得了更好的预测准确性,应纳入植物育种者的工具包中,用于大规模育种计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cb3/7813801/b4686c837cee/fpls-11-613325-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验