Universidad de Quintana Roo, Chetumal, Quintana Roo, 77019 México.
Facultad de Telemática, Universidad de Colima, C. P. 28040, Edo. de Colima, México.
G3 (Bethesda). 2019 Sep 4;9(9):2913-2924. doi: 10.1534/g3.119.400493.
Kernel methods are flexible and easy to interpret and have been successfully used in genomic-enabled prediction of various plant species. Kernel methods used in genomic prediction comprise the linear genomic best linear unbiased predictor (GBLUP or GB) kernel, and the Gaussian kernel (GK). In general, these kernels have been used with two statistical models: single-environment and genomic × environment (GE) models. Recently near infrared spectroscopy (NIR) has been used as an inexpensive and non-destructive high-throughput phenotyping method for predicting unobserved line performance in plant breeding trials. In this study, we used a non-linear arc-cosine kernel (AK) that emulates deep learning artificial neural networks. We compared AK prediction accuracy with the prediction accuracy of GB and GK kernel methods in four genomic data sets, one of which also includes pedigree and NIR information. Results show that for all four data sets, AK and GK kernels achieved higher prediction accuracy than the linear GB kernel for the single-environment and GE multi-environment models. In addition, AK achieved similar or slightly higher prediction accuracy than the GK kernel. For all data sets, the GE model achieved higher prediction accuracy than the single-environment model. For the data set that includes pedigree, markers and NIR, results show that the NIR wavelength alone achieved lower prediction accuracy than the genomic information alone; however, the pedigree plus NIR information achieved only slightly lower prediction accuracy than the marker plus the NIR high-throughput data.
核方法具有灵活性和易于解释的特点,已成功应用于各种植物的基因组支持预测。基因组预测中使用的核方法包括线性基因组最佳线性无偏预测(GBLUP 或 GB)核和高斯核(GK)。一般来说,这些核函数已经在两种统计模型中使用:单环境和基因组×环境(GE)模型。最近,近红外光谱(NIR)已被用作一种廉价且无损的高通量表型测定方法,用于预测植物育种试验中未观察到的系表现。在这项研究中,我们使用了一种模拟深度学习人工神经网络的非线性圆弧余弦核(AK)。我们比较了 AK 预测精度与 GB 和 GK 核方法在四个基因组数据集的预测精度,其中一个数据集还包括系谱和 NIR 信息。结果表明,对于所有四个数据集,对于单环境和 GE 多环境模型,AK 和 GK 核都比线性 GB 核具有更高的预测精度。此外,AK 实现了与 GK 核相似或略高的预测精度。对于所有数据集,GE 模型的预测精度都高于单环境模型。对于包含系谱、标记和 NIR 的数据集,结果表明,NIR 波长本身的预测精度低于基因组信息本身;然而,系谱加 NIR 信息的预测精度仅略低于标记加 NIR 高通量数据。