Suppr超能文献

从代码到床边:使用质量改进方法实施人工智能。

From Code to Bedside: Implementing Artificial Intelligence Using Quality Improvement Methods.

机构信息

Stanford Healthcare AI Applied Research Team, Division of Primary Care and Population Health, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

J Gen Intern Med. 2021 Apr;36(4):1061-1066. doi: 10.1007/s11606-020-06394-w. Epub 2021 Jan 19.

Abstract

Despite increasing interest in how artificial intelligence (AI) can augment and improve healthcare delivery, the development of new AI models continues to outpace adoption in existing healthcare processes. Integration is difficult because current approaches separate the development of AI models from the complex healthcare environments in which they are intended to function, resulting in models developed without a clear and compelling use case and not tested or scalable in a clinical setting. We propose that current approaches and traditional research methods do not support successful AI implementation in healthcare and outline a repeatable mixed-methods approach, along with several examples, that facilitates uptake of AI technologies into human-driven healthcare processes. Unlike traditional research, these methods do not seek to control for variation, but rather understand it to learn how a technology will function in practice coupled with user-centered design techniques. This approach, leveraging design thinking and quality improvement methods, aims to increase the adoption of AI in healthcare and prompt further study to understand which methods are most successful for AI implementations.

摘要

尽管人们对人工智能 (AI) 如何增强和改善医疗保健服务越来越感兴趣,但新 AI 模型的开发仍然超过了现有医疗保健流程的采用速度。由于当前的方法将 AI 模型的开发与它们旨在运行的复杂医疗保健环境分开,导致开发的模型没有明确和引人注目的用例,并且没有在临床环境中进行测试或扩展,因此集成变得困难。我们提出,当前的方法和传统研究方法不能支持人工智能在医疗保健中的成功实施,并概述了一种可重复的混合方法,以及几个示例,这些方法有助于将人工智能技术纳入以人为驱动的医疗保健流程。与传统研究不同,这些方法不是试图控制变化,而是理解它,以了解技术在实践中如何发挥作用,同时结合以用户为中心的设计技术。这种方法利用设计思维和质量改进方法,旨在增加人工智能在医疗保健中的采用,并促使进一步研究,以了解哪些方法对人工智能实施最成功。

相似文献

7
An Open Science Approach to Artificial Intelligence in Healthcare.医疗保健领域人工智能的开放科学方法。
Yearb Med Inform. 2019 Aug;28(1):47-51. doi: 10.1055/s-0039-1677898. Epub 2019 Apr 25.
10

引用本文的文献

7
Artificial intelligence methods available for cancer research.人工智能方法可用于癌症研究。
Front Med. 2024 Oct;18(5):778-797. doi: 10.1007/s11684-024-1085-3. Epub 2024 Aug 8.

本文引用的文献

1
Using clinical simulation to study how to improve quality and safety in healthcare.利用临床模拟研究如何提高医疗保健的质量和安全性。
BMJ Simul Technol Enhanc Learn. 2020 Mar 4;6(2):87-94. doi: 10.1136/bmjstel-2018-000370. Epub 2018 Sep 29.
3
Ten Ways Artificial Intelligence Will Transform Primary Care.人工智能将如何改变初级保健的十种方式
J Gen Intern Med. 2019 Aug;34(8):1626-1630. doi: 10.1007/s11606-019-05035-1. Epub 2019 May 14.
5
A design thinking framework for healthcare management and innovation.医疗保健管理和创新的设计思维框架。
Healthc (Amst). 2016 Mar;4(1):11-4. doi: 10.1016/j.hjdsi.2015.12.002. Epub 2016 Jan 14.
8
What is value in health care?医疗保健中的价值是什么?
N Engl J Med. 2010 Dec 23;363(26):2477-81. doi: 10.1056/NEJMp1011024. Epub 2010 Dec 8.
9
Study designs for PDSA quality improvement research.用于计划-实施-检查-处理(PDSA)质量改进研究的研究设计
Qual Manag Health Care. 2004 Jan-Mar;13(1):17-32. doi: 10.1097/00019514-200401000-00002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验