Suppr超能文献

实时连续血糖监测在 2019 冠状病毒病大流行期间及其对达标时间的影响。

Real-Time Continuous Glucose Monitoring During the Coronavirus Disease 2019 Pandemic and Its Impact on Time in Range.

机构信息

Dexcom, Inc., San Diego, California, USA.

Department of Medicine, University of Washington, Seattle, Washington, USA.

出版信息

Diabetes Technol Ther. 2021 Mar;23(S1):S1-S7. doi: 10.1089/dia.2020.0649.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic disrupted the lives of people with diabetes. Use of real-time continuous glucose monitoring (rtCGM) helped manage diabetes effectively. Some of these disruptions may be reflected in population-scale changes to metrics of glycemic control, such as time-in-range (TIR). We examined data from 65,067 U.S.-based users of the G6 rtCGM System (Dexcom, Inc., San Diego, CA) who had uploaded data before and during the COVID-19 pandemic. Users associated with three counties that included the cities of Los Angeles, Chicago, and New York or with five regions designated by the Centers for Disease Control and Prevention (CDC) were compared. Public data were used to associate regions with prepandemic and intrapandemic glycemic parameters, COVID-19 mortality, and median household income. Compared with an 8-week prepandemic interval before stay-at-home orders (January 6, 2020, to March 1, 2020), overall mean (standard deviation) TIR improved from 59.0 (20.1)% to 61.0 (20.4)% during the early pandemic period (April 20, 2020 to June 14, 2020,  < 0.001). TIR improvements were noted in all three counties and in all five CDC-designated regions. Higher COVID-19 mortality was associated with higher proportions of individuals experiencing TIR improvements of ≥5 percentage points. Users in economically wealthier zip codes had higher pre- and intrapandemic TIR values and greater relative improvements in TIR. TIR and pandemic-related improvements in TIR varied across CDC-designated regions. Population-level rtCGM data may be used to monitor changes in glycemic control with temporal and geographic specificity. The COVID-19 pandemic is associated with improvements in TIR, which were not evenly distributed across the United States.

摘要

2019 年冠状病毒病(COVID-19)大流行扰乱了糖尿病患者的生活。实时连续血糖监测(rtCGM)的使用有助于有效管理糖尿病。这些干扰中的一些可能反映在血糖控制指标的人群规模变化中,例如时间在目标范围内(TIR)。我们检查了来自美国 65067 名使用 G6 rtCGM 系统(Dexcom,Inc.,圣地亚哥,CA)的用户的数据,这些用户在 COVID-19 大流行之前和期间上传了数据。与包括洛杉矶、芝加哥和纽约市在内的三个县或疾病控制与预防中心(CDC)指定的五个地区相关联的用户进行了比较。公共数据用于将地区与大流行前和大流行期间的血糖参数、COVID-19 死亡率和家庭中位数收入相关联。与居家令前的 8 周(2020 年 1 月 6 日至 2020 年 3 月 1 日)相比,总体平均(标准差)TIR 从大流行早期(2020 年 4 月 20 日至 6 月 14 日, < 0.001)从 59.0(20.1)%提高到 61.0(20.4)%。在所有三个县和五个 CDC 指定的地区都观察到 TIR 的改善。COVID-19 死亡率较高与经历 TIR 改善≥5 个百分点的个体比例较高有关。经济较富裕的邮政编码的用户在大流行前和大流行期间的 TIR 值较高,并且 TIR 的相对改善更大。TIR 和与大流行相关的 TIR 改善在 CDC 指定的地区之间存在差异。人群水平的 rtCGM 数据可用于监测血糖控制随时间和地理的变化。COVID-19 大流行与 TIR 的改善有关,而这种改善在美国各地的分布并不均匀。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/344e/7957372/7f22e6a7b66c/dia.2020.0649_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验