Suppr超能文献

一种用于新型RNA基序选择的菲德勒向量评分方法。

A Fiedler Vector Scoring Approach for Novel RNA Motif Selection.

作者信息

Zhu Qiyao, Schlick Tamar

机构信息

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States.

Department of Chemistry, New York University, New York, New York 10003, United States.

出版信息

J Phys Chem B. 2021 Feb 4;125(4):1144-1155. doi: 10.1021/acs.jpcb.0c10685. Epub 2021 Jan 20.

Abstract

Novel RNA motif design is of great practical importance for technology and medicine. Increasingly, computational design plays an important role in such efforts. Our coarse-grained RAG (RNA-As-Graphs) framework offers strategies for enumerating the universe of RNA 2D folds, selecting "" candidates for design, and determining sequences that fold onto these candidates. In RAG, RNA secondary structures are represented as tree or dual graphs. Graphs with known RNA structures are called "existing", and the others are labeled "hypothetical". By using simplified features for RNA graphs, we have clustered the hypothetical graphs into "RNA-like" and "non-RNA-like" groups and proposed RNA-like graphs as candidates for design. Here, we propose a new way of designing graph features by using Fiedler vectors. The new features reflect graph shapes better, and they lead to a more clustered organization of existing graphs. We show significant increases in K-means clustering accuracy by using the new features (e.g., up to 95% and 98% accuracy for tree and dual graphs, respectively). In addition, we propose a scoring model for top graph candidate selection. This scoring model allows users to set a threshold for candidates, and it incorporates weighing of existing graphs based on their corresponding number of known RNAs. We include a list of top scored RNA-like candidates, which we hope will stimulate future novel RNA design.

摘要

新型RNA基序设计对技术和医学具有重大的实际意义。计算设计在这些工作中发挥着越来越重要的作用。我们的粗粒度RAG(RNA-As-Graphs)框架提供了用于枚举RNA二维折叠的全集、选择设计候选对象以及确定折叠到这些候选对象上的序列的策略。在RAG中,RNA二级结构被表示为树状图或对偶图。具有已知RNA结构的图被称为“现有图”,其他的则被标记为“假设图”。通过使用RNA图的简化特征,我们将假设图聚类为“类RNA”和“非类RNA”组,并提出类RNA图作为设计候选对象。在这里,我们提出了一种使用菲德勒向量设计图特征的新方法。新特征能更好地反映图的形状,并且它们导致现有图的聚类组织更加合理。我们展示了使用新特征后K均值聚类准确率的显著提高(例如,树状图和对偶图的准确率分别高达95%和98%)。此外,我们提出了一种用于顶级图候选对象选择的评分模型。该评分模型允许用户为候选对象设置阈值,并且它基于现有图对应的已知RNA数量对其进行加权。我们列出了得分最高的类RNA候选对象列表,希望这将激发未来新型RNA的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/7872303/73856bd00ac5/nihms-1662209-f0002.jpg

相似文献

1
A Fiedler Vector Scoring Approach for Novel RNA Motif Selection.一种用于新型RNA基序选择的菲德勒向量评分方法。
J Phys Chem B. 2021 Feb 4;125(4):1144-1155. doi: 10.1021/acs.jpcb.0c10685. Epub 2021 Jan 20.
5
Predicting Large RNA-Like Topologies by a Knowledge-Based Clustering Approach.基于知识的聚类方法预测大型RNA样拓扑结构
J Mol Biol. 2016 Feb 27;428(5 Pt A):811-821. doi: 10.1016/j.jmb.2015.10.009. Epub 2015 Oct 22.
6
F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.F-RAG:通过片段组装从RNA图生成原子坐标
J Mol Biol. 2017 Nov 24;429(23):3587-3605. doi: 10.1016/j.jmb.2017.09.017. Epub 2017 Oct 5.
8
RAG: an update to the RNA-As-Graphs resource.RAG:RNA-As-Graphs 资源的更新。
BMC Bioinformatics. 2011 May 31;12:219. doi: 10.1186/1471-2105-12-219.

引用本文的文献

4
Automatic generation of pseudoknotted RNAs taxonomy.自动生成假结 RNA 分类学。
BMC Bioinformatics. 2023 Jun 15;23(Suppl 6):575. doi: 10.1186/s12859-023-05362-5.

本文引用的文献

3
Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.SARS-CoV-2 框架移位 RNA 元件的结构改变突变。
Biophys J. 2021 Mar 16;120(6):1040-1053. doi: 10.1016/j.bpj.2020.10.012. Epub 2020 Oct 21.
10
Adventures with RNA graphs.RNA 图形的冒险之旅。
Methods. 2018 Jul 1;143:16-33. doi: 10.1016/j.ymeth.2018.03.009. Epub 2018 Apr 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验