Suppr超能文献

不同纳米结构电催化的原位表面增强拉曼光谱表征

In Situ Surface-Enhanced Raman Spectroscopy Characterization of Electrocatalysis with Different Nanostructures.

作者信息

Wen Bao-Ying, Chen Qing-Qi, Radjenovic Petar M, Dong Jin-Chao, Tian Zhong-Qun, Li Jian-Feng

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; email:

出版信息

Annu Rev Phys Chem. 2021 Apr 20;72:331-351. doi: 10.1146/annurev-physchem-090519-034645. Epub 2021 Jan 20.

Abstract

As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.

摘要

随着能源需求的增加,电催化作为能量转换中的一种重要工具。利用原位光谱表征技术阐明电催化机制可为制备高效电催化剂提供实验指导。表面增强拉曼光谱(SERS)能够为超痕量表面物种提供丰富的光谱信息,极其适合用于研究它们的活性。为了提高材料和形态的通用性,研究人员采用了不同种类的纳米结构,这些纳米结构在SERS技术的发展中发挥了重要作用。人们提出了不同的策略,如所谓的从壳层隔离模式借用增强和壳层隔离纳米粒子增强拉曼光谱(SHINERS)-卫星结构,以获得高效的拉曼增强,这些方法使得将SERS应用于各种电催化系统成为可能。在此,我们讨论SERS技术的发展,重点关注其在不同电催化反应(如氧还原反应)以及不同纳米结构表面的应用,并对其发展进行简要展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验