Suppr超能文献

对 SARS-CoV-2 刺突蛋白 D614G 点突变后分子特征的洞察,一项分子动力学研究。

Insight into molecular characteristics of SARS-CoV-2 spike protein following D614G point mutation, a molecular dynamics study.

机构信息

Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.

Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran.

出版信息

J Biomol Struct Dyn. 2022 Aug;40(12):5634-5642. doi: 10.1080/07391102.2021.1872418. Epub 2021 Jan 21.

Abstract

Undoubtedly, the SARS-CoV-2 has become a major concern for all societies due to its catastrophic effects on public health. In addition, mutations and changes in the structure of the virus make it difficult to design effective treatment. Moreover, the amino acid sequence of a protein is a major factor in the formation of the second and tertiary structure in a protein. Amino acid replacement can have noticeable effects on the folding of a protein, especially if an asymmetric change (substitution of polar residue with non-polar, charged with an uncharged, positive charge with a negative charge, or large residue with small residue) occurs. D614G as a spike mutant of SARS-CoV-2 previously identified as an associated risk factor with a high mortality rate of this virus. Using structural bioinformatics, our group determined that D614G mutation could cause extensive changes in SARS-CoV-2 behavior including the secondary structure, receptor binding pattern, 3D conformation, and stability of it.Communicated by Ramaswamy H. Sarma.

摘要

毫无疑问,由于其对公共卫生的灾难性影响,SARS-CoV-2 已成为所有社会的主要关注点。此外,病毒的突变和结构变化使得设计有效的治疗方法变得困难。此外,蛋白质的氨基酸序列是蛋白质形成二级和三级结构的主要因素。氨基酸替换会对蛋白质的折叠产生明显的影响,特别是如果发生不对称变化(极性残基替换为非极性残基、带电荷的残基替换为不带电荷的残基、正电荷替换为负电荷、或大残基替换为小残基)。D614G 是先前鉴定为与该病毒高死亡率相关的 SARS-CoV-2 刺突突变体。使用结构生物信息学,我们的研究小组确定 D614G 突变可能导致 SARS-CoV-2 行为发生广泛变化,包括二级结构、受体结合模式、3D 构象和稳定性。通讯作者:Ramaswamy H. Sarma。

相似文献

1
Insight into molecular characteristics of SARS-CoV-2 spike protein following D614G point mutation, a molecular dynamics study.
J Biomol Struct Dyn. 2022 Aug;40(12):5634-5642. doi: 10.1080/07391102.2021.1872418. Epub 2021 Jan 21.
6
SARS-CoV-2 mutations and where to find them: an perspective of structural changes and antigenicity of the spike protein.
J Biomol Struct Dyn. 2022 Apr;40(7):3336-3346. doi: 10.1080/07391102.2020.1844052. Epub 2020 Nov 6.
7
Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity.
Int J Infect Dis. 2021 Feb;103:611-616. doi: 10.1016/j.ijid.2020.10.033. Epub 2020 Oct 17.
9
Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.
PLoS One. 2020 Nov 10;15(11):e0241168. doi: 10.1371/journal.pone.0241168. eCollection 2020.

引用本文的文献

1
Exploring the Intrinsic Structural Plasticity and Conformational Dynamics of Human Beta Coronavirus Spike Glycoproteins.
J Chem Inf Model. 2025 Jul 28;65(14):7712-7733. doi: 10.1021/acs.jcim.5c00990. Epub 2025 Jul 17.
2
Allosteric Control and Glycan Shielding Adaptations in the SARS-CoV-2 Spike from Early to Peak Virulence.
bioRxiv. 2025 Mar 12:2025.03.11.642723. doi: 10.1101/2025.03.11.642723.
7
COV2Var, a function annotation database of SARS-CoV-2 genetic variation.
Nucleic Acids Res. 2024 Jan 5;52(D1):D701-D713. doi: 10.1093/nar/gkad958.
9
Global landscape of SARS-CoV-2 mutations and conserved regions.
J Transl Med. 2023 Feb 25;21(1):152. doi: 10.1186/s12967-023-03996-w.
10
Structural evolution of Delta lineage of SARS-CoV-2.
Int J Biol Macromol. 2023 Jan 31;226:1116-1140. doi: 10.1016/j.ijbiomac.2022.11.227. Epub 2022 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验