Suppr超能文献

利用低成本空气传感器网络估算邻里尺度的逐时 PM 浓度:洛杉矶案例研究。

Estimating hourly PM concentrations at the neighborhood scale using a low-cost air sensor network: A Los Angeles case study.

机构信息

Department of Urban Planning and Spatial Analysis, University of Southern California, Los Angeles, CA, USA.

Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

出版信息

Environ Res. 2021 Apr;195:110653. doi: 10.1016/j.envres.2020.110653. Epub 2021 Jan 18.

Abstract

Predicting PM concentrations at a fine spatial and temporal resolution (i.e., neighborhood, hourly) is challenging. Recent growth in low cost sensor networks is providing increased spatial coverage of air quality data that can be used to supplement data provided by monitors of regulatory agencies. We developed an hourly, 500 × 500 m gridded PM model that integrates PurpleAir low-cost air sensor network data for Los Angeles County. We developed a quality control scheme for PurpleAir data. We included spatially and temporally varying predictors in a random forest model with random oversampling of high concentrations to predict PM. The model achieved high prediction accuracy (10-fold cross-validation (CV) R = 0.93, root mean squared error (RMSE) = 3.23 μg/m; spatial CV R = 0.88, spatial RMSE = 4.33 μg/m; temporal CV R = 0.90, temporal RMSE = 3.85 μg/m). Our model was able to predict spatial and diurnal patterns in PM on typical weekdays and weekends, as well as non-typical days, such as holidays and wildfire days. The model allows for far more precise estimates of PM than existing methods based on few sensors. Taking advantage of low-cost PM sensors, our hourly random forest model predictions can be combined with time-activity diaries in future studies, enabling geographically and temporally fine exposure estimation for specific population groups in studies of acute air pollution health effects and studies of environmental justice issues.

摘要

预测 PM 浓度的精细时空分辨率(即邻里、每小时)具有挑战性。最近低成本传感器网络的发展为空气质量数据提供了更多的空间覆盖范围,可以用来补充监管机构监测器提供的数据。我们开发了一个每小时、500×500 米的 PM 网格化模型,该模型整合了洛杉矶县的 PurpleAir 低成本空气传感器网络数据。我们开发了一个 PurpleAir 数据的质量控制方案。我们在随机森林模型中包含了时空变化的预测因子,并对高浓度进行随机过采样,以预测 PM。该模型实现了高精度预测(10 倍交叉验证(CV)R=0.93,均方根误差(RMSE)=3.23μg/m;空间 CV R=0.88,空间 RMSE=4.33μg/m;时间 CV R=0.90,时间 RMSE=3.85μg/m)。我们的模型能够预测典型工作日和周末以及非典型日(如节假日和野火日)的 PM 空间和昼夜模式。该模型可以比现有的基于少数传感器的方法更精确地估计 PM。利用低成本 PM 传感器,我们的每小时随机森林模型预测可以与未来研究中的时间活动日记相结合,为急性空气污染健康影响研究和环境正义问题研究中的特定人群提供地理和时间上精细的暴露估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验