Suppr超能文献

一种基于注意力机制、双向门控循环单元(BiGRU)和卷积神经网络(Inception-CNN)的工业物联网(IIoT)入侵检测改进方法。

An improved intrusion detection method for IIoT using attention mechanisms, BiGRU, and Inception-CNN.

作者信息

Yang Kai, Wang JiaMing, Li MinJing

机构信息

School of Computer, Xijing University, Xi'an, 710123, China.

出版信息

Sci Rep. 2024 Aug 20;14(1):19339. doi: 10.1038/s41598-024-70094-2.

Abstract

In the field of Industrial Internet of Things (IIoT), existing intrusion detection models face challenges in three main areas: low accuracy in detecting attack traffic, feature redundancy when dealing with high-dimensional and complex attack traffic, making it difficult to capture critical information, and a tendency to favor learning common categories while neglecting rare categories when handling imbalanced data. To tackle these challenges, this study introduces an intrusion detection method that combines an attention mechanism, Bidirectional Gated Recurrent Units (BiGRU), and Inception Convolutional Neural Network (Inception-CNN) to enhance the model's detection rate. Simultaneously, the method employs a mixed sampling strategy for data resampling to address the bias learning issue caused by data imbalance. Additionally, the method employs a hybrid sampling strategy for data resampling to address the bias learning issue caused by data imbalance. It also incorporates denoising techniques to handle potential dataset noise introduced by hybrid sampling. Furthermore, a feature selection method combining Pearson correlation coefficient and Random Forest is applied to eliminate feature redundancy, enhancing the model's ability to capture crucial information from high-dimensional attack traffic. Experimental validation on internationally recognized datasets (Edge-IIoTset, CIC-IDS2017, and CIC IoT 2023) affirms the reliability of the proposed intrusion detection method. This approach underscores the significance of intrusion detection in the security of Industrial IoT and showcases its potential in addressing pertinent challenges in network security.

摘要

在工业物联网(IIoT)领域,现有的入侵检测模型在三个主要方面面临挑战:检测攻击流量的准确性低;处理高维复杂攻击流量时存在特征冗余,难以捕捉关键信息;处理不平衡数据时倾向于学习常见类别而忽视罕见类别。为应对这些挑战,本研究引入了一种入侵检测方法,该方法结合了注意力机制、双向门控循环单元(BiGRU)和Inception卷积神经网络(Inception-CNN),以提高模型的检测率。同时,该方法采用混合采样策略对数据进行重采样,以解决数据不平衡导致的偏差学习问题。此外,该方法采用混合采样策略对数据进行重采样,以解决数据不平衡导致的偏差学习问题。它还采用去噪技术来处理混合采样引入的潜在数据集噪声。此外,应用了一种结合皮尔逊相关系数和随机森林的特征选择方法来消除特征冗余,增强模型从高维攻击流量中捕捉关键信息的能力。在国际认可的数据集(Edge-IIoTset、CIC-IDS2017和CIC IoT 2023)上进行的实验验证证实了所提出的入侵检测方法的可靠性。这种方法强调了入侵检测在工业物联网安全中的重要性,并展示了其在解决网络安全相关挑战方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd95/11335856/18935cf14091/41598_2024_70094_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验