Suppr超能文献

前列腺癌发生与进展的转录组图谱:综合分析

The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis.

作者信息

Marzec Jacek, Ross-Adams Helen, Pirrò Stefano, Wang Jun, Zhu Yanan, Mao Xueying, Gadaleta Emanuela, Ahmad Amar S, North Bernard V, Kammerer-Jacquet Solène-Florence, Stankiewicz Elzbieta, Kudahetti Sakunthala C, Beltran Luis, Ren Guoping, Berney Daniel M, Lu Yong-Jie, Chelala Claude

机构信息

Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.

Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.

出版信息

Cancers (Basel). 2021 Jan 19;13(2):345. doi: 10.3390/cancers13020345.

Abstract

Next-generation sequencing of primary tumors is now standard for transcriptomic studies, but microarray-based data still constitute the majority of available information on other clinically valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed a robust analytical framework to integrate data across different technical platforms and disease subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported stage-specific candidate genes with prognostic significance were also found. Here, we integrate gene expression data from disparate sample types, disease stages and technical platforms into one coherent whole, to give a global view of the expression changes associated with the development and progression of PC from normal tissue through to metastatic disease. Summary and individual data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly interface designed for clinicians and laboratory researchers to facilitate translational research.

摘要

原发性肿瘤的新一代测序现在是转录组学研究的标准方法,但基于微阵列的数据仍然构成了其他具有临床价值样本(包括存档材料)中可用信息的大部分。以前列腺癌(PC)为模型,我们开发了一个强大的分析框架,以整合不同技术平台和疾病亚型的数据,连接不同的疾病阶段,并揭示仅从单一研究中无法识别的潜在相关基因。我们通过追踪从正常前列腺到高级别前列腺上皮内瘤变和转移性疾病的mRNA水平变化,重建了前列腺癌的分子图谱,从而首次全面洞察其发展过程。还发现了总共九个以前未报道的具有预后意义的阶段特异性候选基因。在这里,我们将来自不同样本类型、疾病阶段和技术平台的基因表达数据整合为一个连贯的整体,以全面了解从正常组织到转移性疾病的前列腺癌发生和发展过程中的表达变化。总结和个体数据可在前列腺综合表达数据库(PIXdb)在线获取,该数据库是一个用户友好的界面,专为临床医生和实验室研究人员设计,以促进转化研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/7838904/444d0a62fab0/cancers-13-00345-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验