School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW, 2006, Australia.
Department of Biology, Biosciences Complex, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
BMC Biol. 2021 Jan 21;19(1):11. doi: 10.1186/s12915-020-00942-w.
Thermal plasticity is pivotal for evolution in changing climates and in mediating resilience to its potentially negative effects. The efficacy to respond to environmental change depends on underlying mechanisms. DNA methylation induced by DNA methyltransferase 3 enzymes in the germline or during early embryonic development may be correlated with responses to environmental change. This developmental plasticity can interact with reversible acclimation within adult organisms, which would increase the speed of response and could alleviate potential mismatches between parental or early embryonic environments and those experienced at later life stages. Our aim was to determine whether there is a causative relationship between DNMT3 enzyme and developmental thermal plasticity and whether either or both interact with short-term acclimation to alter fitness and thermal responses in zebrafish (Danio rerio).
We developed a novel DNMT3a knock-out model to show that sequential knock-out of DNA methyltransferase 3a isoforms (DNMT3aa and DNMT3aaab) additively decreased survival and increased deformities when cold developmental temperatures in zebrafish offspring mismatched warm temperatures experienced by parents. Interestingly, short-term cold acclimation of parents before breeding rescued DNMT3a knock-out offspring by restoring survival at cold temperatures. DNMT3a knock-out genotype interacted with developmental temperatures to modify thermal performance curves in offspring, where at least one DNMT3a isoform was necessary to buffer locomotion from increasing temperatures. The thermal sensitivity of citrate synthase activity, an indicator of mitochondrial density, was less severely affected by DNMT3a knock-out, but there was nonetheless a significant interaction between genotype and developmental temperatures.
Our results show that DNMT3a regulates developmental thermal plasticity and that the phenotypic effects of different DNMT3a isoforms are additive. However, DNMT3a interacts with other mechanisms, such as histone (de)acetylation, induced during short-term acclimation to buffer phenotypes from environmental change. Interactions between these mechanisms make phenotypic compensation for climate change more efficient and make it less likely that thermal plasticity incurs a cost resulting from environmental mismatches.
热塑性对于适应气候变化和缓解其潜在负面影响至关重要。适应环境变化的效果取决于潜在机制。生殖细胞或早期胚胎发育中 DNA 甲基转移酶 3 酶诱导的 DNA 甲基化可能与对环境变化的反应有关。这种发育可塑性可以与成年生物体内可逆的驯化相互作用,这将提高反应速度,并可能减轻亲代或早期胚胎环境与后期生命阶段经历的环境之间潜在的不匹配。我们的目的是确定 DNA 甲基转移酶 3 酶和发育热塑性之间是否存在因果关系,以及它们中的任何一个或两个是否与短期驯化相互作用,以改变斑马鱼(Danio rerio)的适应性和热反应。
我们开发了一种新的 DNA 甲基转移酶 3a 敲除模型,表明在斑马鱼后代中,当冷发育温度与亲代经历的暖温度不匹配时,连续敲除 DNA 甲基转移酶 3a 同工型(DNMT3aa 和 DNMT3aaab)会降低存活率并增加畸形。有趣的是,在繁殖前对亲鱼进行短期冷驯化可以通过恢复冷温度下的存活率来挽救 DNA 甲基转移酶 3a 敲除的后代。DNA 甲基转移酶 3a 敲除基因型与发育温度相互作用,改变了后代的热性能曲线,其中至少有一种 DNA 甲基转移酶 3a 同工型对从温度升高引起的运动起到缓冲作用。柠檬酸合成酶活性(线粒体密度的指标)的热敏感性受 DNA 甲基转移酶 3a 敲除的影响较小,但基因型与发育温度之间仍存在显著的相互作用。
我们的结果表明,DNA 甲基转移酶 3a 调节发育热塑性,并且不同 DNA 甲基转移酶 3a 同工型的表型效应是累加的。然而,DNA 甲基转移酶 3a 与其他机制相互作用,例如短期驯化过程中诱导的组蛋白(去)乙酰化,以缓冲表型免受环境变化的影响。这些机制之间的相互作用使气候变化的表型补偿更有效,并降低了热塑性因环境不匹配而产生成本的可能性。