Suppr超能文献

扩展 STED 显微镜(ExSTED)。

Expansion STED microscopy (ExSTED).

机构信息

Max Planck Institut für molekulare Zellbiologie und Genetik, Dresden, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany.

Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany.

出版信息

Methods Cell Biol. 2021;161:15-31. doi: 10.1016/bs.mcb.2020.06.001. Epub 2020 Jun 29.

Abstract

The recently developed expansion microscopy method (ExM) allows for the resolution of structures below the diffraction limit of light not by sophisticated instrumentation, but rather by physically expanding the molecular structure of cells. This happens by crosslinking the protein in the sample to a hydrogel that is polymerized in situ and subsequently expanded, tearing the proteins apart in a nearly isotropic manner. In the resulting, larger facsimile of the original sample, the fluorescence-labeled molecules of interest can be optically separated by conventional fluorescence microscopy since the intermolecular distances are enlarged by a factor ranging from ~4 to 20 depending on the chemistry used for the hydrogel. The achieved improvement in resolution thus corresponds to the expansion factor. Further increase in resolution beyond this value may be achieved by combining ExM with established super-resolution microscopy methods. Indeed, this is possible using structured illumination microscopy (SIM) (Halpern et al., 2017; Wang et al., 2018), single molecule localization microscopy (SMLM) (Zwettler et al., 2020) and stimulated emission depletion (STED), as we and others have shown recently (Gambarotto et al., 2019; Gao et al., 2018; Kim, Kim, Lee, & Shim, 2019; Unnersjö-Jess et al., 2016). Here, we provide a protocol, for our method, called ExSTED, which enabled us to achieve an increase in resolution of up to 30-fold compared to conventional microscopy, well beyond what is possible with conventional STED microscopy. Our protocol includes a strategy to achieve very high intensity fluorescence labeling, which is essential for optimal signal retention during the expansion process for ExSTED.

摘要

最近开发的扩展显微镜方法 (ExM) 允许解析低于光的衍射极限的结构,而不是通过复杂的仪器,而是通过物理扩展细胞的分子结构。这是通过将样品中的蛋白质交联到原位聚合的水凝胶上来实现的,随后水凝胶会膨胀,以近乎各向同性的方式撕裂蛋白质。在原始样品的更大复制品中,通过传统的荧光显微镜可以光学分离标记有荧光的感兴趣分子,因为分子间距离通过使用的水凝胶的化学性质扩大了约 4 到 20 倍。因此,分辨率的提高对应于扩展因子。通过将 ExM 与现有的超分辨率显微镜方法相结合,可以进一步提高分辨率。实际上,这是可能的,使用结构光照明显微镜 (SIM) (Halpern 等人,2017;Wang 等人,2018)、单分子定位显微镜 (SMLM) (Zwettler 等人,2020) 和受激发射损耗 (STED),正如我们和其他人最近所示 (Gambarotto 等人,2019;Gao 等人,2018;Kim、Kim、Lee 和 Shim,2019;Unnersjö-Jess 等人,2016)。在这里,我们提供了一种称为 ExSTED 的方法的协议,该方法使我们能够实现分辨率提高高达 30 倍,远远超过传统 STED 显微镜的可能性。我们的协议包括一种实现非常高荧光标记强度的策略,这对于 ExSTED 扩展过程中的最佳信号保留至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验