Suppr超能文献

超像素ComBat建模:一种用于协调和表征T1加权图像中扫描仪间变异性的联合方法。

Superpixel-ComBat modeling: A joint approach for harmonization and characterization of inter-scanner variability in T1-weighted images.

作者信息

Chen Chang-Le, Torbati Mahbaneh Eshaghzadeh, Minhas Davneet S, Laymon Charles M, Hwang Seong Jae, Bilgel Murat, Crainiceanu Adina, Jin Hecheng, Luo Weiquan, Maillard Pauline, Fletcher Evan, Crainiceanu Ciprian M, DeCarli Charles S, Aizenstein Howard J, Tudorascu Dana L

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.

Intelligent System Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Imaging Neurosci (Camb). 2024 Oct 3;2. doi: 10.1162/imag_a_00306. eCollection 2024.

Abstract

T1-weighted imaging holds wide applications in clinical and research settings; however, the challenge of inter-scanner variability arises when combining data across scanners, which impedes multi-site research. To address this, post-acquisition harmonization methods such as statistical or deep learning approaches have been proposed to unify cross-scanner images. Nevertheless, how inter-scanner variability manifests in images and derived measures, and how to harmonize it in an interpretable manner, remains underexplored. To broaden our knowledge of inter-scanner variability and leverage it to develop a new harmonization strategy, we devised a pipeline to assess the interpretable inter-scanner variability in matched T1-weighted images across four 3T MRI scanners. The pipeline incorporates ComBat modeling with 3D superpixel parcellation algorithm (namely SP-ComBat), which estimates location and scale effects to quantify the shift and spread in relative signal distributions, respectively, concerning brain tissues in the image domain. The estimated parametric maps revealed significant contrast deviations compared to the joint signal distribution across scanners (< 0.001), and the identified deviations in signal intensities may relate to differences in the inversion time acquisition parameter. To reduce the inter-scanner variability, we implemented a harmonization strategy involving proper image preprocessing and site effect removal by ComBat-derived parameters, achieving substantial improvement in image quality and significant reduction in variation of volumetric measures of brain tissues (< 0.001). We also applied SP-ComBat to evaluate and characterize the performance of various image harmonization techniques, demonstrating a new way to assess image harmonization. In addition, we reported various metrics of T1-weighted images to quantify the impact of inter-scanner variation, including signal-to-noise ratio, contrast-to-noise ratio, signal inhomogeneity index, and structural similarity index. This study demonstrates a pipeline that extends the implementation of statistical ComBat method to the image domain in a practical manner for characterizing and harmonizing the inter-scanner variability in T1-weighted images, providing further insight for the studies focusing on the development of image harmonization methodologies and their applications.

摘要

T1加权成像在临床和研究环境中有着广泛的应用;然而,在跨扫描仪合并数据时会出现扫描仪间变异性的挑战,这阻碍了多中心研究。为了解决这个问题,已经提出了诸如统计或深度学习方法等采集后归一化方法来统一跨扫描仪图像。然而,扫描仪间变异性在图像和派生测量中如何表现,以及如何以可解释的方式对其进行归一化,仍未得到充分探索。为了拓宽我们对扫描仪间变异性的认识并利用它来开发一种新的归一化策略,我们设计了一个流程来评估四台3T MRI扫描仪匹配的T1加权图像中可解释的扫描仪间变异性。该流程将ComBat建模与3D超像素分割算法(即SP-ComBat)相结合,该算法估计位置和尺度效应,分别量化图像域中脑组织相对信号分布的偏移和扩散。与跨扫描仪的联合信号分布相比,估计的参数图显示出显著的对比度偏差(<0.001),并且识别出的信号强度偏差可能与反转时间采集参数的差异有关。为了减少扫描仪间变异性,我们实施了一种归一化策略,包括适当的图像预处理和通过ComBat派生参数去除站点效应,在图像质量上取得了显著改善,脑组织体积测量的变化也显著减少(<0.001)。我们还应用SP-ComBat来评估和表征各种图像归一化技术的性能,展示了一种评估图像归一化的新方法。此外,我们报告了T1加权图像的各种指标,以量化扫描仪间变化的影响,包括信噪比、对比度噪声比、信号不均匀性指数和结构相似性指数。本研究展示了一个流程,该流程以实际方式将统计ComBat方法的实施扩展到图像域,以表征和归一化T1加权图像中的扫描仪间变异性,为专注于图像归一化方法开发及其应用的研究提供了进一步的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b02f/12290534/433fc102dfcb/imag_a_00306_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验