Suppr超能文献

关于脑血管反应性映射成像方案的优化

On the optimization of imaging protocol for the mapping of cerebrovascular reactivity.

作者信息

Ravi Harshan, Thomas Binu P, Peng Shin-Lei, Liu Hanli, Lu Hanzhang

机构信息

Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.

Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA.

出版信息

J Magn Reson Imaging. 2016 Mar;43(3):661-8. doi: 10.1002/jmri.25028. Epub 2015 Aug 13.

Abstract

BACKGROUND

To devise an improved blood-oxygen-level-dependent (BOLD) imaging protocol for cerebrovascular reactivity (CVR) measurement that can remove a known artifact of negative values.

METHODS

Theoretical and simulation studies were first performed to understand the biophysical mechanism of the negative CVR signals, through which improved BOLD sequence parameters were proposed. This was achieved by equating signal intensities between cerebrospinal fluid and blood, by means of shortening the echo time (TE) of the BOLD sequence. Then, 10 healthy volunteers were recruited to participate in an experimental study, in which we compared the CVR results of two versions of the optimized ("Opt1" and "Opt2") protocols with that of the standard protocol at 3 Tesla. Two sessions were performed for each subject to test the reproducibility of all three protocols.

RESULTS

Experimental results demonstrated that the optimized protocols resulted in elimination of negative-CVR voxels. Quantitative CVR results were compared across protocols, which show that the optimized protocols yielded smaller CVR values (Opt1: 0.16 ± 0.01 %BOLD/mmHg CO2 ; Opt2: 0.15 ± 0.01 %BOLD/mmHg CO2 ) than (P < 0.001) the standard protocol (0.21 ± 0.01 %BOLD/mmHg CO2 ), but the CNR was comparable (P = 0.1) to the standard protocol. The coefficient-of-variation between repetitions was found to be 5.6 ± 1.4%, 6.3 ± 1.6%, and 6.9 ± 0.9% for the three protocols, but there were no significant differences (P = 0.65).

CONCLUSION

Based on the theoretical and experimental results obtained from this study, we suggest that the use of a TE shorter than those used in fMRI is necessary to minimize negative artifact in CVR results.

摘要

背景

设计一种改进的血氧水平依赖(BOLD)成像方案用于脑血管反应性(CVR)测量,该方案可消除已知的负值伪影。

方法

首先进行理论和模拟研究以了解负CVR信号的生物物理机制,据此提出改进的BOLD序列参数。这通过使脑脊液和血液之间的信号强度相等来实现,具体方法是缩短BOLD序列的回波时间(TE)。然后,招募10名健康志愿者参与实验研究,在3特斯拉磁场下,我们将两种优化版本(“Opt1”和“Opt2”)方案的CVR结果与标准方案的结果进行比较。对每个受试者进行两次测试以检验所有三种方案的可重复性。

结果

实验结果表明,优化后的方案消除了负CVR体素。对各方案的定量CVR结果进行比较,结果显示优化后的方案产生的CVR值(Opt1:0.16±0.01%BOLD/mmHg CO2;Opt2:0.15±0.01%BOLD/mmHg CO2)比标准方案(0.21±0.01%BOLD/mmHg CO2)小(P<0.001),但对比噪声比(CNR)与标准方案相当(P=0.1)。三种方案重复测量之间的变异系数分别为5.6±1.4%、6.3±1.6%和6.9±0.9%,但差异无统计学意义(P=0.65)。

结论

基于本研究获得的理论和实验结果,我们建议使用比功能磁共振成像(fMRI)中使用的TE更短的TE,以尽量减少CVR结果中的负伪影。

相似文献

1
On the optimization of imaging protocol for the mapping of cerebrovascular reactivity.
J Magn Reson Imaging. 2016 Mar;43(3):661-8. doi: 10.1002/jmri.25028. Epub 2015 Aug 13.
2
Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques.
Magn Reson Imaging. 2015 Jun;33(5):566-76. doi: 10.1016/j.mri.2015.02.018. Epub 2015 Feb 20.
3
Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
Neuroimage. 2016 Sep;138:147-163. doi: 10.1016/j.neuroimage.2016.05.025. Epub 2016 May 11.
4
Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility.
Neuroimage. 2016 Jul 15;135:223-31. doi: 10.1016/j.neuroimage.2016.02.037. Epub 2016 Feb 22.
6
Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge.
Neuroimage. 2021 Dec 15;245:118754. doi: 10.1016/j.neuroimage.2021.118754. Epub 2021 Nov 23.
7
Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles.
Neuroimage. 2013 Dec;83:505-12. doi: 10.1016/j.neuroimage.2013.07.005. Epub 2013 Jul 10.
8
The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity.
PLoS One. 2019 May 6;14(5):e0215294. doi: 10.1371/journal.pone.0215294. eCollection 2019.
9
The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO in healthy subjects.
Neuroimage. 2020 Feb 15;207:116365. doi: 10.1016/j.neuroimage.2019.116365. Epub 2019 Nov 14.
10
Reproducibility of cerebrovascular reactivity measures in children using BOLD MRI.
J Magn Reson Imaging. 2016 May;43(5):1191-5. doi: 10.1002/jmri.25063. Epub 2015 Oct 5.

引用本文的文献

2
Problems and solutions in quantifying cerebrovascular reactivity using BOLD-MRI.
Imaging Neurosci (Camb). 2025 May 2;3. doi: 10.1162/imag_a_00556. eCollection 2025.
3
The influence of cardiovascular fitness and ventilatory efficiency on fMRI assessed cerebrovascular reactivity in older adults.
Front Physiol. 2025 May 8;16:1581187. doi: 10.3389/fphys.2025.1581187. eCollection 2025.
4
Blood-oxygenation-level-dependent (BOLD) MRI responses to CO and O inhalation in brain gliomas.
Magn Reson Imaging. 2025 Jun;119:110364. doi: 10.1016/j.mri.2025.110364. Epub 2025 Feb 27.
5
Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge.
Neuroimage. 2021 Dec 15;245:118754. doi: 10.1016/j.neuroimage.2021.118754. Epub 2021 Nov 23.
6
Reproducibility of cerebrovascular reactivity measurements: A systematic review of neuroimaging techniques.
J Cereb Blood Flow Metab. 2022 May;42(5):700-717. doi: 10.1177/0271678X211056702. Epub 2021 Nov 22.
7
Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review.
Front Physiol. 2021 Feb 25;12:643468. doi: 10.3389/fphys.2021.643468. eCollection 2021.
8
Improving the Breath-Holding CVR Measurement Using the Multiband Multi-Echo EPI Sequence.
Front Physiol. 2021 Feb 26;12:619714. doi: 10.3389/fphys.2021.619714. eCollection 2021.
9
MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.
Alzheimers Dement. 2021 Apr;17(4):716-725. doi: 10.1002/alz.12216. Epub 2021 Jan 21.
10
Association of cerebrovascular reactivity and Alzheimer pathologic markers with cognitive performance.
Neurology. 2020 Aug 25;95(8):e962-e972. doi: 10.1212/WNL.0000000000010133. Epub 2020 Jul 13.

本文引用的文献

1
Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan.
Neuroimage. 2015 Jun;113:387-96. doi: 10.1016/j.neuroimage.2015.03.004. Epub 2015 Mar 18.
3
Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.
J Magn Reson Imaging. 2015 Aug;42(2):231-46. doi: 10.1002/jmri.24786. Epub 2015 Feb 26.
5
MRI mapping of cerebrovascular reactivity via gas inhalation challenges.
J Vis Exp. 2014 Dec 17(94):52306. doi: 10.3791/52306.
6
Impaired cerebrovascular reactivity in multiple sclerosis.
JAMA Neurol. 2014 Oct;71(10):1275-81. doi: 10.1001/jamaneurol.2014.1668.
7
Investigating the non-linearity of the BOLD cerebrovascular reactivity response to targeted hypo/hypercapnia at 7T.
Neuroimage. 2014 Sep;98:296-305. doi: 10.1016/j.neuroimage.2014.05.006. Epub 2014 May 12.
9
Comparison of CO2 in air versus carbogen for the measurement of cerebrovascular reactivity with magnetic resonance imaging.
J Cereb Blood Flow Metab. 2013 Nov;33(11):1799-805. doi: 10.1038/jcbfm.2013.131. Epub 2013 Aug 7.
10
Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles.
Neuroimage. 2013 Dec;83:505-12. doi: 10.1016/j.neuroimage.2013.07.005. Epub 2013 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验