文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

关于脑血管反应性映射成像方案的优化

On the optimization of imaging protocol for the mapping of cerebrovascular reactivity.

作者信息

Ravi Harshan, Thomas Binu P, Peng Shin-Lei, Liu Hanli, Lu Hanzhang

机构信息

Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.

Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA.

出版信息

J Magn Reson Imaging. 2016 Mar;43(3):661-8. doi: 10.1002/jmri.25028. Epub 2015 Aug 13.


DOI:10.1002/jmri.25028
PMID:26268541
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4752936/
Abstract

BACKGROUND: To devise an improved blood-oxygen-level-dependent (BOLD) imaging protocol for cerebrovascular reactivity (CVR) measurement that can remove a known artifact of negative values. METHODS: Theoretical and simulation studies were first performed to understand the biophysical mechanism of the negative CVR signals, through which improved BOLD sequence parameters were proposed. This was achieved by equating signal intensities between cerebrospinal fluid and blood, by means of shortening the echo time (TE) of the BOLD sequence. Then, 10 healthy volunteers were recruited to participate in an experimental study, in which we compared the CVR results of two versions of the optimized ("Opt1" and "Opt2") protocols with that of the standard protocol at 3 Tesla. Two sessions were performed for each subject to test the reproducibility of all three protocols. RESULTS: Experimental results demonstrated that the optimized protocols resulted in elimination of negative-CVR voxels. Quantitative CVR results were compared across protocols, which show that the optimized protocols yielded smaller CVR values (Opt1: 0.16 ± 0.01 %BOLD/mmHg CO2 ; Opt2: 0.15 ± 0.01 %BOLD/mmHg CO2 ) than (P < 0.001) the standard protocol (0.21 ± 0.01 %BOLD/mmHg CO2 ), but the CNR was comparable (P = 0.1) to the standard protocol. The coefficient-of-variation between repetitions was found to be 5.6 ± 1.4%, 6.3 ± 1.6%, and 6.9 ± 0.9% for the three protocols, but there were no significant differences (P = 0.65). CONCLUSION: Based on the theoretical and experimental results obtained from this study, we suggest that the use of a TE shorter than those used in fMRI is necessary to minimize negative artifact in CVR results.

摘要

背景:设计一种改进的血氧水平依赖(BOLD)成像方案用于脑血管反应性(CVR)测量,该方案可消除已知的负值伪影。 方法:首先进行理论和模拟研究以了解负CVR信号的生物物理机制,据此提出改进的BOLD序列参数。这通过使脑脊液和血液之间的信号强度相等来实现,具体方法是缩短BOLD序列的回波时间(TE)。然后,招募10名健康志愿者参与实验研究,在3特斯拉磁场下,我们将两种优化版本(“Opt1”和“Opt2”)方案的CVR结果与标准方案的结果进行比较。对每个受试者进行两次测试以检验所有三种方案的可重复性。 结果:实验结果表明,优化后的方案消除了负CVR体素。对各方案的定量CVR结果进行比较,结果显示优化后的方案产生的CVR值(Opt1:0.16±0.01%BOLD/mmHg CO2;Opt2:0.15±0.01%BOLD/mmHg CO2)比标准方案(0.21±0.01%BOLD/mmHg CO2)小(P<0.001),但对比噪声比(CNR)与标准方案相当(P=0.1)。三种方案重复测量之间的变异系数分别为5.6±1.4%、6.3±1.6%和6.9±0.9%,但差异无统计学意义(P=0.65)。 结论:基于本研究获得的理论和实验结果,我们建议使用比功能磁共振成像(fMRI)中使用的TE更短的TE,以尽量减少CVR结果中的负伪影。

相似文献

[1]
On the optimization of imaging protocol for the mapping of cerebrovascular reactivity.

J Magn Reson Imaging. 2016-3

[2]
Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques.

Magn Reson Imaging. 2015-6

[3]
Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.

Neuroimage. 2016-9

[4]
Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility.

Neuroimage. 2016-7-15

[5]
Impact of baseline CO on Blood-Oxygenation-Level-Dependent MRI measurements of cerebrovascular reactivity and task-evoked signal activation.

Magn Reson Imaging. 2018-6

[6]
Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge.

Neuroimage. 2021-12-15

[7]
Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles.

Neuroimage. 2013-12

[8]
The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity.

PLoS One. 2019-5-6

[9]
The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO in healthy subjects.

Neuroimage. 2020-2-15

[10]
Reproducibility of cerebrovascular reactivity measures in children using BOLD MRI.

J Magn Reson Imaging. 2016-5

引用本文的文献

[1]
Cerebrovascular reactivity mapping using breath-hold BOLD-fMRI: Comparison of signal models combined with voxelwise lag optimization.

Imaging Neurosci (Camb). 2025-7-14

[2]
Problems and solutions in quantifying cerebrovascular reactivity using BOLD-MRI.

Imaging Neurosci (Camb). 2025-5-2

[3]
The influence of cardiovascular fitness and ventilatory efficiency on fMRI assessed cerebrovascular reactivity in older adults.

Front Physiol. 2025-5-8

[4]
Blood-oxygenation-level-dependent (BOLD) MRI responses to CO and O inhalation in brain gliomas.

Magn Reson Imaging. 2025-6

[5]
Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge.

Neuroimage. 2021-12-15

[6]
Reproducibility of cerebrovascular reactivity measurements: A systematic review of neuroimaging techniques.

J Cereb Blood Flow Metab. 2022-5

[7]
Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review.

Front Physiol. 2021-2-25

[8]
Improving the Breath-Holding CVR Measurement Using the Multiband Multi-Echo EPI Sequence.

Front Physiol. 2021-2-26

[9]
MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.

Alzheimers Dement. 2021-4

[10]
Association of cerebrovascular reactivity and Alzheimer pathologic markers with cognitive performance.

Neurology. 2020-7-13

本文引用的文献

[1]
Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan.

Neuroimage. 2015-6

[2]
Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases.

J Magn Reson Imaging. 2015-3-6

[3]
Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.

J Magn Reson Imaging. 2015-8

[4]
Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity.

Neuroimage. 2015-4-15

[5]
MRI mapping of cerebrovascular reactivity via gas inhalation challenges.

J Vis Exp. 2014-12-17

[6]
Impaired cerebrovascular reactivity in multiple sclerosis.

JAMA Neurol. 2014-10

[7]
Investigating the non-linearity of the BOLD cerebrovascular reactivity response to targeted hypo/hypercapnia at 7T.

Neuroimage. 2014-5-12

[8]
Vascular steal explains early paradoxical blood oxygen level-dependent cerebrovascular response in brain regions with delayed arterial transit times.

Cerebrovasc Dis Extra. 2013-4-12

[9]
Comparison of CO2 in air versus carbogen for the measurement of cerebrovascular reactivity with magnetic resonance imaging.

J Cereb Blood Flow Metab. 2013-8-7

[10]
Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles.

Neuroimage. 2013-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索