Suppr超能文献

基于机器学习的常染色体显性阿尔茨海默病建模。

Modeling autosomal dominant Alzheimer's disease with machine learning.

机构信息

Washington University in St. Louis, St. Louis, Missouri, USA.

University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Alzheimers Dement. 2021 Jun;17(6):1005-1016. doi: 10.1002/alz.12259. Epub 2021 Jan 21.

Abstract

INTRODUCTION

Machine learning models were used to discover novel disease trajectories for autosomal dominant Alzheimer's disease.

METHODS

Longitudinal structural magnetic resonance imaging, amyloid positron emission tomography (PET), and fluorodeoxyglucose PET were acquired in 131 mutation carriers and 74 non-carriers from the Dominantly Inherited Alzheimer Network; the groups were matched for age, education, sex, and apolipoprotein ε4 (APOE ε4). A deep neural network was trained to predict disease progression for each modality. Relief algorithms identified the strongest predictors of mutation status.

RESULTS

The Relief algorithm identified the caudate, cingulate, and precuneus as the strongest predictors among all modalities. The model yielded accurate results for predicting future Pittsburgh compound B (R  = 0.95), fluorodeoxyglucose (R  = 0.93), and atrophy (R  = 0.95) in mutation carriers compared to non-carriers.

DISCUSSION

Results suggest a sigmoidal trajectory for amyloid, a biphasic response for metabolism, and a gradual decrease in volume, with disease progression primarily in subcortical, middle frontal, and posterior parietal regions.

摘要

简介

使用机器学习模型发现常染色体显性阿尔茨海默病的新疾病轨迹。

方法

从显性遗传性阿尔茨海默病网络中采集了 131 名突变携带者和 74 名非携带者的纵向结构磁共振成像、淀粉样蛋白正电子发射断层扫描(PET)和氟脱氧葡萄糖 PET;两组在年龄、教育程度、性别和载脂蛋白 E4(APOE ε4)方面相匹配。训练深度神经网络以预测每种模态的疾病进展。Relief 算法确定了突变状态的最强预测因子。

结果

Relief 算法确定尾状核、扣带回和楔前叶是所有模态中最强的预测因子。与非携带者相比,该模型在预测未来匹兹堡化合物 B(R = 0.95)、氟脱氧葡萄糖(R = 0.93)和萎缩(R = 0.95)方面,对突变携带者的预测结果非常准确。

讨论

结果表明淀粉样蛋白呈类正弦轨迹,代谢呈双相反应,体积逐渐下降,疾病进展主要发生在皮质下、中额和后顶叶区域。

相似文献

引用本文的文献

2
Predicting continuous amyloid PET values with CSF and plasma Aβ42/Aβ40.利用脑脊液和血浆中的Aβ42/Aβ40预测连续淀粉样蛋白PET值。
Alzheimers Dement (Amst). 2023 Mar 2;15(1):e12405. doi: 10.1002/dad2.12405. eCollection 2023 Jan-Mar.
4
A Perspective: Challenges in Dementia Research.一个观点:痴呆症研究中的挑战。
Medicina (Kaunas). 2022 Sep 28;58(10):1368. doi: 10.3390/medicina58101368.
6
8
A double-dichotomy clustering of dual pathology dementia patients.双病理痴呆患者的双重二分法聚类
Cereb Circ Cogn Behav. 2021;2. doi: 10.1016/j.cccb.2021.100011. Epub 2021 Apr 2.

本文引用的文献

9
Machine Learning for Medical Imaging.用于医学成像的机器学习
Radiographics. 2017 Mar-Apr;37(2):505-515. doi: 10.1148/rg.2017160130. Epub 2017 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验