From the Department of Radiology and Biomedical Imaging (Y.D., J.H.S., H.T., R.H., N.W.J., T.P.C., M.S.A., C.M.A., S.C.B., R.R.F., S.Y.H., Y.S., R.A.H., M.H.P., B.L.F.) and Institute for Computational Health Sciences (J.H.S., M.G.K., H.T., D.L., K.A.Z., D.H.), University of California, San Francisco, 550 Parnassus Ave, San Francisco, CA 94143; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, Calif (Y.D.); and Department of Radiology, University of California, Davis, Sacramento, Calif (L.N.).
Radiology. 2019 Feb;290(2):456-464. doi: 10.1148/radiol.2018180958. Epub 2018 Nov 6.
Purpose To develop and validate a deep learning algorithm that predicts the final diagnosis of Alzheimer disease (AD), mild cognitive impairment, or neither at fluorine 18 (F) fluorodeoxyglucose (FDG) PET of the brain and compare its performance to that of radiologic readers. Materials and Methods Prospective F-FDG PET brain images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (2109 imaging studies from 2005 to 2017, 1002 patients) and retrospective independent test set (40 imaging studies from 2006 to 2016, 40 patients) were collected. Final clinical diagnosis at follow-up was recorded. Convolutional neural network of InceptionV3 architecture was trained on 90% of ADNI data set and tested on the remaining 10%, as well as the independent test set, with performance compared to radiologic readers. Model was analyzed with sensitivity, specificity, receiver operating characteristic (ROC), saliency map, and t-distributed stochastic neighbor embedding. Results The algorithm achieved area under the ROC curve of 0.98 (95% confidence interval: 0.94, 1.00) when evaluated on predicting the final clinical diagnosis of AD in the independent test set (82% specificity at 100% sensitivity), an average of 75.8 months prior to the final diagnosis, which in ROC space outperformed reader performance (57% [four of seven] sensitivity, 91% [30 of 33] specificity; P < .05). Saliency map demonstrated attention to known areas of interest but with focus on the entire brain. Conclusion By using fluorine 18 fluorodeoxyglucose PET of the brain, a deep learning algorithm developed for early prediction of Alzheimer disease achieved 82% specificity at 100% sensitivity, an average of 75.8 months prior to the final diagnosis. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Larvie in this issue.
开发并验证一种深度学习算法,以预测氟 18(F)氟脱氧葡萄糖(FDG)脑 PET 扫描中阿尔茨海默病(AD)、轻度认知障碍或两者均无的最终诊断,并比较其与放射科医师的表现。
前瞻性地收集来自阿尔茨海默病神经影像学倡议(ADNI)的 F-FDG 脑 PET 图像(2005 年至 2017 年的 2109 项影像学研究,1002 例患者)和回顾性独立测试集(2006 年至 2016 年的 40 项影像学研究,40 例患者)。记录随访时的最终临床诊断。基于 InceptionV3 架构的卷积神经网络在 90%的 ADNI 数据集上进行训练,并在其余 10%的数据和独立测试集上进行测试,与放射科医师的表现进行比较。使用敏感性、特异性、受试者工作特征(ROC)曲线、显著图和 t 分布随机邻域嵌入分析模型。
该算法在独立测试集上预测 AD 的最终临床诊断时,ROC 曲线下面积为 0.98(95%置信区间:0.94,1.00)(特异性为 82%,敏感性为 100%),平均提前 75.8 个月做出诊断,这在 ROC 空间优于放射科医师的表现(敏感性为 57%[7 例中的 4 例],特异性为 91%[33 例中的 30 例];P<.05)。显著图显示了对已知感兴趣区域的关注,但同时也关注整个大脑。
利用氟 18 氟脱氧葡萄糖脑 PET,为早期预测 AD 而开发的深度学习算法在特异性为 100%、敏感性为 82%时,可提前平均 75.8 个月做出诊断。
©2018 年放射学会。在线补充材料可在本文中获取。也可参见本期杂志 Larvie 医生的述评。