Kim Yoonhee, Ji Soohyun, Nam Jwa-Min
Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
Acc Chem Res. 2023 Aug 15;56(16):2139-2150. doi: 10.1021/acs.accounts.3c00196. Epub 2023 Jul 31.
ConspectusPlasmonic metal nanostructures have been extensively developed over the past few decades because of their ability to confine light within the surfaces and manipulate strong light-matter interactions. The light energy stored by plasmonic nanomaterials in the form of surface plasmons can be utilized to initiate chemical reactions, so-called plasmon-induced catalysis, which stresses the importance of understanding the surface chemistry of the plasmonic materials. Nevertheless, only physical interpretation of plasmonic behaviors has been a dominant theme, largely excluding chemical intuitions that facilitate understanding of plasmonic systems from molecular perspectives. To overcome and address the lack of this complementary understanding based on molecular viewpoints, in this Account we provide a new concept encompassing the well-developed physics of plasmonics and the corresponding surface chemistry while reviewing and discussing related references. Inspired by Roald Hoffmann's descriptions of solid-state surfaces based on the molecular orbital picture, we treat molecular interfaces of plasmonic metal nanostructures as a series of metal-ligand complexes. Accordingly, the effects of the surface ligands can be described by bisecting them into electronic and steric contributions to the systems. By exploration of the quality of orbital overlaps and the symmetry of the plasmonic systems, electronic effects of surface ligands on localized surface plasmon resonances (LSPRs), surface diffusion rates, and hot-carrier transfer mechanisms are investigated. Specifically, the propensity of ligands to donate electrons in a σ-bonding manner can change the LSPR by shifting the density of states near the Fermi level, whereas other types of ligands donating or accepting electrons in a π-bonding manner modulate surface diffusion rates by affecting the metal-metal bond strength. In addition, the formation of metal-ligand bonds facilitates direct hot-carrier transfer by forming a sort of molecular orbital between a plasmonic structure and ligands. Furthermore, effects of steric environments are discussed in terms of ligand-ligand and ligand-surface nonbonding interactions. The steric hindrance allows for controlling the accessibility of the surrounding chemical species toward the metal surface by modulating the packing density of ligands and generating repulsive interactions with the surface atoms. This unconventional approach of considering the plasmonic system as a delocalized molecular entity could establish a basis for integrating chemical intuition with physical phenomena. Our chemist's outlook on a molecular interface of the plasmonic surface can provide insights and avenues for the design and development of more exquisite plasmonic catalysts with regio- and enantioselectivities as well as advanced sensors with unprecedented chemical controllability and specificity.
概述
在过去几十年中,等离子体金属纳米结构得到了广泛发展,因为它们能够将光限制在表面并操纵强光与物质的相互作用。等离子体纳米材料以表面等离子体的形式存储的光能可用于引发化学反应,即所谓的等离子体诱导催化,这突出了理解等离子体材料表面化学的重要性。然而,对等离子体行为的物理解释一直是主导主题,很大程度上排除了从分子角度促进对等离子体系统理解的化学直觉。为了克服并解决基于分子观点的这种互补理解的不足,在本综述中,我们在回顾和讨论相关参考文献的同时,提供了一个涵盖成熟的等离子体物理学及其相应表面化学的新概念。受罗尔德·霍夫曼基于分子轨道图景对固态表面的描述启发,我们将等离子体金属纳米结构的分子界面视为一系列金属 - 配体配合物。因此,表面配体的效应可以通过将它们分为对系统的电子贡献和空间贡献来描述。通过探索轨道重叠的质量和等离子体系统的对称性,研究了表面配体对局域表面等离子体共振(LSPR)、表面扩散速率和热载流子转移机制的电子效应。具体而言,配体以σ键方式供电子的倾向可以通过改变费米能级附近的态密度来改变LSPR,而其他以π键方式供电子或接受电子的配体类型则通过影响金属 - 金属键强度来调节表面扩散速率。此外,金属 - 配体键的形成通过在等离子体结构和配体之间形成一种分子轨道促进了直接热载流子转移。此外,从配体 - 配体和配体 - 表面非键相互作用的角度讨论了空间环境的影响。空间位阻允许通过调节配体的堆积密度并与表面原子产生排斥相互作用来控制周围化学物种接近金属表面的可及性。这种将等离子体系统视为离域分子实体的非常规方法可以为将化学直觉与物理现象相结合奠定基础。我们从化学家的角度对等离子体表面分子界面的看法可以为设计和开发具有区域和对映选择性的更精细等离子体催化剂以及具有前所未有的化学可控性和特异性的先进传感器提供见解和途径。