Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA.
Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
J Physiol. 2024 Sep;602(17):4195-4213. doi: 10.1113/JP286679. Epub 2024 Aug 14.
The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs. burst-firing subicular neurons and their dynamic modulation by the activation of μ opioid receptors. We have taken advantage of the sequential re-patching of the same cell to initially classify pyramidal neurons according to their firing patters, and then to measure GABAergic events triggered by the optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons. Activation of parvalbumin-expressing cells generated larger responses in postsynaptic burst-firing neurons whereas the opposite was observed for currents evoked by the stimulation of somatostatin-expressing interneurons. In all cases, events depended critically on ω-agatoxin IVA- but not on ω-conotoxin GVIA-sensitive calcium channels. Optogenetic GABAergic input originating from both parvalbumin- and somatostatin-expressing cells was reduced in amplitude following the exposure to a μ opioid receptor agonist. The kinetics of this pharmacological sensitivity was different in regular- vs. burst-firing neurons, but only when responses were evoked by the activation of parvalbumin-expressing neurons, whereas no differences were observed when somatostatin-expressing cells were stimulated. In conclusion, our results show that a high degree of complexity regulates the organizing principles of subicular GABAergic inhibition, with the interaction of pre- and postsynaptic diversity at multiple levels. KEY POINTS: Optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons (PVs and SOMs) triggers inhibitory postsynaptic currents (IPSCs) in both regular- and burst-firing (RFs and BFs) subicular pyramidal cells. The amplitude of optogenetically evoked IPSCs from PVs (PV-opto IPSCs) is larger in BFs whereas IPSCs generated by the light activation of SOMs (SOM-opto IPSCs) are larger in RFs. Both PV- and SOM-opto IPSCs critically depend on ω-agatoxin IVA-sensitive P/Q type voltage-gated calcium channels, whereas no major effects are observed following exposure to ω-conotoxin GVIA, suggesting no significant involvement of N-type channels. The amplitude of both PV- and SOM-opto IPSCs is reduced by the probable pharmacological activation of presynaptic μ opioid receptors, with a faster kinetics of the effect observed in PV-opto IPSCs from RFs vs. BFs, but not in SOM-opto IPSCs. These results help us understand the complex interactions between different layers of diversity regulating GABAergic input onto subicular microcircuits.
海兔是大脑中与颞叶癫痫病理性活动起始相关的关键区域,局部 GABA 能抑制对于防止海兔起源的癫痫样放电至关重要。根据其不同的放电模式,海兔锥体神经元可容易地分为两类。在这里,我们比较了常规放电和爆发放电海兔神经元所接受的 GABAa 受体介导的抑制性突触后电流的强度,以及 μ 阿片受体激活对其的动态调制。我们利用对同一细胞的顺序重新贴附,根据其放电模式最初对锥体神经元进行分类,然后测量光遗传刺激表达巴氯芬和生长抑素的中间神经元触发的 GABA 能事件。表达巴氯芬的细胞的激活在突触后爆发放电神经元中产生更大的反应,而刺激表达生长抑素的中间神经元所引起的电流则相反。在所有情况下,事件都严重依赖于 ω-阿片毒素 IVA-,但不依赖于 ω-芋螺毒素 GVIA 敏感的钙通道。暴露于 μ 阿片受体激动剂后,来源于表达巴氯芬和生长抑素的细胞的光遗传 GABA 能输入的幅度减小。这种药理学敏感性的动力学在常规放电和爆发放电神经元中不同,但仅在由表达巴氯芬的神经元激活时观察到,而当刺激表达生长抑素的细胞时则没有观察到差异。总之,我们的结果表明,高度的复杂性调节了海兔 GABA 能抑制的组织原则,在多个水平上存在着突触前和突触后的多样性相互作用。
光遗传刺激表达巴氯芬和生长抑素的中间神经元(PVs 和 SOMs)可在常规放电和爆发放电(RFs 和 BFs)海兔锥体神经元中触发抑制性突触后电流(IPSCs)。由光激活表达巴氯芬的神经元产生的光遗传诱导 IPSC(PV-opto IPSCs)在 BF 中幅度较大,而由光激活表达生长抑素的神经元产生的 IPSC(SOM-opto IPSCs)在 RF 中幅度较大。PV-opto IPSCs 和 SOM-opto IPSCs 都严重依赖于 ω-阿片毒素 IVA 敏感的 P/Q 型电压门控钙通道,而 ω-芋螺毒素 GVIA 暴露后几乎没有影响,表明 N 型通道没有明显参与。
两种光遗传诱导 IPSC(PV-opto IPSCs 和 SOM-opto IPSCs)的幅度均通过可能的药理学激活突触前 μ 阿片受体而降低,RFs 中的 PV-opto IPSCs 与 BFs 相比,观察到效应的动力学更快,但在 SOM-opto IPSCs 中则没有观察到。这些结果有助于我们理解调节海兔微电路 GABA 能输入的不同层次的多样性之间的复杂相互作用。