Xu Yongshan, Xie Jiayue, Zhang Yunfan, Tian FengHui, Yang Chen, Zheng Wei, Liu Xianghong, Zhang Jun, Pinna Nicola
College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China.
State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
J Hazard Mater. 2021 Jun 5;411:125120. doi: 10.1016/j.jhazmat.2021.125120. Epub 2021 Jan 13.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) hold great promise for room temperature (RT) NO sensors. However, the exposure of the edges of TMDs with high adsorption capability and electronic activity remains a great obstacle to achieve high sensor sensitivity. Herein, we demonstrate a high-performance RT NO gas sensor based on WS nanosheets/carbon nanofibers (CNFs) composite with abundant intentionally exposed WS edges. Few-layer WS nanosheets are anchored on CNFs through a hydrothermal process. The approach permits to achieve a coating presenting an optimized active surface area and accessibility of the sensing layers. The exposure of WS edges remarkably improves the sensing properties. Consequently, the WS@CNFs composite exhibits excellent selectivity to NO at RT with improved response and much lower detection limit in comparison to the WS and CNFs counterparts. Density functional theory (DFT) calculations verify a surprisingly strong NO adsorption on WS edge sites (adsorption energy 3.40 eV) with a partial charge transfer of 0.394e, while a week adsorption on the basal surface of WS (adsorption energy 0.25 eV) with a partial charge transfer of 0.171e. The strategy proposed herein will be instructive to the design of efficient material structures for low-power NO sensors with optimized performances.
二维(2D)过渡金属二硫属化物(TMDs)在室温(RT)NO传感器方面具有巨大潜力。然而,具有高吸附能力和电子活性的TMDs边缘暴露仍然是实现高传感器灵敏度的一大障碍。在此,我们展示了一种基于WS纳米片/碳纳米纤维(CNFs)复合材料的高性能室温NO气体传感器,该复合材料具有大量有意暴露的WS边缘。通过水热法将少层WS纳米片锚定在CNFs上。该方法能够实现一种涂层,该涂层具有优化的活性表面积和传感层的可及性。WS边缘的暴露显著改善了传感性能。因此,与WS和CNFs对应物相比,WS@CNFs复合材料在室温下对NO表现出优异的选择性,具有更高的响应和更低的检测限。密度泛函理论(DFT)计算证实,NO在WS边缘位点上有惊人的强吸附(吸附能3.40 eV),部分电荷转移为0.394e,而在WS基面上周吸附(吸附能0.25 eV),部分电荷转移为0.171e。本文提出的策略将为设计具有优化性能的低功耗NO传感器的高效材料结构提供指导。