Suzuki Shura, Kano Takeshi, Ijspeert Auke J, Ishiguro Akio
Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.
Japan Society for the Promotion of Science, Tokyo, Japan.
Front Neurorobot. 2021 Jan 8;14:607455. doi: 10.3389/fnbot.2020.607455. eCollection 2020.
Quadruped animals achieve agile and highly adaptive locomotion owing to the coordination between their legs and other body parts, such as the trunk, head, and tail, that is, body-limb coordination. This study aims to understand the sensorimotor control underlying body-limb coordination. To this end, we adopted sprawling locomotion in vertebrate animals as a model behavior. This is a quadruped walking gait with lateral body bending used by many amphibians and lizards. Our previous simulation study demonstrated that cross-coupled sensory feedback between the legs and trunk helps to rapidly establish body-limb coordination and improve locomotion performance. This paper presented an experimental validation of the cross-coupled sensory feedback control using a newly developed quadruped robot. The results show similar tendencies to the simulation study. Sensory feedback provides rapid convergence to stable gait, robustness against leg failure, and morphological changes. Our study suggests that sensory feedback potentially plays an essential role in body-limb coordination and provides a robust, sensory-driven control principle for quadruped robots.
四足动物能够实现敏捷且高度适应性的运动,这得益于它们的腿部与其他身体部位(如躯干、头部和尾巴)之间的协调,即身体-肢体协调。本研究旨在了解身体-肢体协调背后的感觉运动控制。为此,我们采用脊椎动物的 sprawl 运动作为模型行为。这是一种许多两栖动物和蜥蜴所使用的具有身体侧向弯曲的四足行走步态。我们之前的模拟研究表明,腿部与躯干之间的交叉耦合感觉反馈有助于快速建立身体-肢体协调并提高运动性能。本文使用新开发的四足机器人对交叉耦合感觉反馈控制进行了实验验证。结果显示出与模拟研究相似的趋势。感觉反馈能够快速收敛到稳定步态,对腿部故障具有鲁棒性,并且能适应形态变化。我们的研究表明,感觉反馈可能在身体-肢体协调中起着至关重要的作用,并为四足机器人提供了一种强大的、由感觉驱动的控制原理。