Suppr超能文献

基于堆叠去噪稀疏自编码器的甲状腺结节分类

Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder.

作者信息

Li Zexin, Yang Kaiji, Zhang Lili, Wei Chiju, Yang Peixuan, Xu Wencan

机构信息

Health Care Center, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Shantou 515041, China.

Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Shantou 515041, China.

出版信息

Int J Endocrinol. 2020 Dec 7;2020:9015713. doi: 10.1155/2020/9015713. eCollection 2020.

Abstract

PURPOSE

Several commercial tests have been used for the classification of indeterminate thyroid nodules in cytology. However, the geographic inconvenience and high cost confine their widespread use. This study aims to develop a classifier for conveniently clinical utility.

METHODS

Gene expression data of thyroid nodule tissues were collected from three public databases. Immune-related genes were used to construct the classifier with stacked denoising sparse autoencoder.

RESULTS

The classifier performed well in discriminating malignant and benign thyroid nodules, with an area under the curve of 0.785 [0.638-0.931], accuracy of 92.9% [92.7-93.0%], sensitivity of 98.6% [95.9-101.3%], specificity of 58.3% [30.4-86.2%], positive likelihood ratio of 2.367 [1.211-4.625], and negative likelihood ratio of 0.024 [0.003-0.177]. In the cancer prevalence range of 20-40% for indeterminate thyroid nodules in cytology, the range of negative predictive value of this classifier was 37-61%, and the range of positive predictive value was 98-99%.

CONCLUSION

The classifier developed in this study has the superb discriminative ability for thyroid nodules. However, it needs validation in cytologically indeterminate thyroid nodules before clinical use.

摘要

目的

多种商业检测方法已被用于细胞学中不确定甲状腺结节的分类。然而,地理上的不便和高昂的成本限制了它们的广泛应用。本研究旨在开发一种便于临床应用的分类器。

方法

从三个公共数据库收集甲状腺结节组织的基因表达数据。使用免疫相关基因通过堆叠去噪稀疏自编码器构建分类器。

结果

该分类器在区分恶性和良性甲状腺结节方面表现良好,曲线下面积为0.785[0.638 - 0.931],准确率为92.9%[92.7 - 93.0%],灵敏度为98.6%[95.9 - 101.3%],特异度为58.3%[30.4 - 86.2%],阳性似然比为2.367[1.211 - 4.625],阴性似然比为0.024[0.003 - 0.177]。在细胞学中不确定甲状腺结节的癌症患病率为20 - 40%的范围内,该分类器的阴性预测值范围为37 - 61%,阳性预测值范围为98 - 99%。

结论

本研究开发的分类器对甲状腺结节具有出色的鉴别能力。然而,在临床使用前,它需要在细胞学不确定的甲状腺结节中进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc73/7787836/61526dcebcab/IJE2020-9015713.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验