Suppr超能文献

在振荡磁场中游泳的两面神微二聚体。

Janus microdimer swimming in an oscillating magnetic field.

作者信息

Yang Jinyou

机构信息

School of Fundamental Sciences, China Medical University, Shenyang 110122, People's Republic of China.

出版信息

R Soc Open Sci. 2020 Dec 9;7(12):200378. doi: 10.1098/rsos.200378. eCollection 2020 Dec.

Abstract

Artificial microswimmers powered by magnetic fields have numerous applications, such as drug delivery, biosensing for minimally invasive medicine and environmental remediation. Recently, a Janus microdimer surface walker that can be propelled by an oscillating magnetic field near a surface was reported by Li ( , 1706066. (doi:10.1002/adfm.201706066)). To clarify the mechanism for the surface walker, we numerically studied in detail a Janus microdimer swimming near a wall actuated by an oscillating magnetic field. The results showed that a Janus microdimer in an oscillating magnetic field can produce magnetic torque in the -direction, which eventually propels the Janus microdimer along the -direction near a wall. Furthermore, we found that the Janus microdimer can also move along a special direction in an oscillating magnetic field with two orientations without a wall. The knowledge obtained in this study is fundamental for understanding the interactions between a Janus microdimer and surfaces in an oscillating magnetic field and is useful for controlling Janus microdimer motion with or without a wall.

摘要

由磁场驱动的人工微游动器有许多应用,如药物递送、微创医学的生物传感和环境修复。最近,李等人报道了一种在表面附近可由振荡磁场驱动的双面微二聚体表面行走器(,1706066。(doi:10.1002/adfm.201706066))。为了阐明表面行走器的机制,我们详细地对在振荡磁场驱动下靠近壁面游动的双面微二聚体进行了数值研究。结果表明,在振荡磁场中的双面微二聚体可在 - 方向产生磁转矩,最终使双面微二聚体在靠近壁面处沿 - 方向推进。此外,我们发现双面微二聚体在没有壁面的情况下,在具有两种取向的振荡磁场中也能沿特定方向移动。本研究中获得的知识对于理解振荡磁场中双面微二聚体与表面之间的相互作用至关重要,并且对于控制有无壁面情况下双面微二聚体的运动很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791e/7813250/ffac6334c62c/rsos200378-g1.jpg

相似文献

1
Janus microdimer swimming in an oscillating magnetic field.
R Soc Open Sci. 2020 Dec 9;7(12):200378. doi: 10.1098/rsos.200378. eCollection 2020 Dec.
2
Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.
Nanomaterials (Basel). 2019 Nov 22;9(12):1672. doi: 10.3390/nano9121672.
3
Multimode microdimer robot for crossing tissue morphological barrier.
iScience. 2023 Oct 28;26(11):108320. doi: 10.1016/j.isci.2023.108320. eCollection 2023 Nov 17.
4
Hydrodynamic simulations of self-phoretic microswimmers.
Soft Matter. 2014 Sep 7;10(33):6208-18. doi: 10.1039/c4sm00621f. Epub 2014 Jul 11.
5
Micro-/Nanorobots Propelled by Oscillating Magnetic Fields.
Micromachines (Basel). 2018 Oct 23;9(11):540. doi: 10.3390/mi9110540.
6
Magnetic Microdimer as Mobile Meter for Measuring Plasma Glucose and Lipids.
Front Bioeng Biotechnol. 2021 Nov 26;9:779632. doi: 10.3389/fbioe.2021.779632. eCollection 2021.
8
Janus magnetoelastic membrane swimmers.
Soft Matter. 2023 Sep 13;19(35):6721-6730. doi: 10.1039/d3sm00788j.
9
Numerical study of a microscopic artificial swimmer.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021907. doi: 10.1103/PhysRevE.74.021907. Epub 2006 Aug 7.
10
Special section on biomimetics of movement.
Bioinspir Biomim. 2011 Dec;6(4):040201. doi: 10.1088/1748-3182/6/4/040201. Epub 2011 Nov 29.

引用本文的文献

1
Magnetic propelled hydrogel microrobots for actively enhancing the efficiency of lycorine hydrochloride to suppress colorectal cancer.
Front Bioeng Biotechnol. 2024 Feb 21;12:1361617. doi: 10.3389/fbioe.2024.1361617. eCollection 2024.
2
Application of micro/nanorobot in medicine.
Front Bioeng Biotechnol. 2024 Jan 25;12:1347312. doi: 10.3389/fbioe.2024.1347312. eCollection 2024.
3
Magnetic-Driven Hydrogel Microrobots Selectively Enhance Synthetic Lethality in MTAP-Deleted Osteosarcoma.
Front Bioeng Biotechnol. 2022 Jul 6;10:911455. doi: 10.3389/fbioe.2022.911455. eCollection 2022.

本文引用的文献

1
A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines .
Sci Robot. 2019 Jul 31;4(32). doi: 10.1126/scirobotics.aax0613. Epub 2019 Jul 24.
2
Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.
Nanomaterials (Basel). 2019 Nov 22;9(12):1672. doi: 10.3390/nano9121672.
3
Bacterial detachment from a wall with a bump line.
Phys Rev E. 2019 Feb;99(2-1):023104. doi: 10.1103/PhysRevE.99.023104.
4
A swarm of slippery micropropellers penetrates the vitreous body of the eye.
Sci Adv. 2018 Nov 2;4(11):eaat4388. doi: 10.1126/sciadv.aat4388. eCollection 2018 Nov.
5
Focusing and Sorting of Ellipsoidal Magnetic Particles in Microchannels.
Phys Rev Lett. 2017 Nov 10;119(19):198002. doi: 10.1103/PhysRevLett.119.198002. Epub 2017 Nov 8.
6
Highly Efficient Freestyle Magnetic Nanoswimmer.
Nano Lett. 2017 Aug 9;17(8):5092-5098. doi: 10.1021/acs.nanolett.7b02383. Epub 2017 Jul 19.
7
Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions.
Phys Rev E. 2017 Mar;95(3-1):032609. doi: 10.1103/PhysRevE.95.032609. Epub 2017 Mar 30.
8
A Force to Be Reckoned With: A Review of Synthetic Microswimmers Powered by Ultrasound.
Small. 2015 Jun 24;11(24):2836-46. doi: 10.1002/smll.201403621. Epub 2015 Apr 7.
10
Colloidal superstructures programmed into magnetic Janus particles.
Adv Mater. 2015 Feb 4;27(5):874-9. doi: 10.1002/adma.201403857. Epub 2014 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验