Suppr超能文献

旋转磁场下的自驱动双面微二聚体游动体

Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.

作者信息

Yu Shimin, Ma Ningze, Yu Hao, Sun Haoran, Chang Xiaocong, Wu Zhiguang, Deng Jiaxuan, Zhao Shuqi, Wang Wuyi, Zhang Guangyu, Zhang Weiwei, Zhao Qingsong, Li Tianlong

机构信息

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.

Institute of Pharmacy, Sechenov University, 119991 Moscow, Russia.

出版信息

Nanomaterials (Basel). 2019 Nov 22;9(12):1672. doi: 10.3390/nano9121672.

Abstract

Recent strides in micro- and nanofabrication technology have enabled researchers to design and develop new micro- and nanorobots for biomedicine and environmental monitoring. Due to its non-invasive remote actuation and convenient navigation abilities, magnetic propulsion has been widely used in micro- and nanoscale robotic systems. In this article, a highly efficient Janus microdimer swimmer propelled by a rotating uniform magnetic field was investigated experimentally and numerically. The velocity of the Janus microdimer swimmer can be modulated by adjusting the magnetic field frequency with a maximum speed of 133 μm·s (≈13.3 body length s) at the frequency of 32 Hz. Fast and accurate navigation of these Janus microdimer swimmers in complex environments and near obstacles was also demonstrated. This efficient propulsion behavior of the new Janus microdimer swimmer holds considerable promise for diverse future practical applications ranging from nanoscale manipulation and assembly to nanomedicine.

摘要

微纳制造技术的最新进展使研究人员能够设计和开发用于生物医学和环境监测的新型微纳机器人。由于其非侵入性远程驱动和便捷的导航能力,磁驱动已广泛应用于微纳尺度的机器人系统。在本文中,对一种由旋转均匀磁场驱动的高效 Janus 微二聚体游动器进行了实验和数值研究。通过调整磁场频率可以调节 Janus 微二聚体游动器的速度,在 32 Hz 频率下最大速度可达 133 μm·s(≈13.3 体长每秒)。还展示了这些 Janus 微二聚体游动器在复杂环境和靠近障碍物时的快速准确导航。这种新型 Janus 微二聚体游动器的高效推进行为在从纳米尺度操纵和组装到纳米医学等各种未来实际应用中具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641a/6956008/8cffdb80e2ef/nanomaterials-09-01672-g001.jpg

相似文献

1
Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.
Nanomaterials (Basel). 2019 Nov 22;9(12):1672. doi: 10.3390/nano9121672.
2
Janus microdimer swimming in an oscillating magnetic field.
R Soc Open Sci. 2020 Dec 9;7(12):200378. doi: 10.1098/rsos.200378. eCollection 2020 Dec.
3
Micro-/Nanorobots Propelled by Oscillating Magnetic Fields.
Micromachines (Basel). 2018 Oct 23;9(11):540. doi: 10.3390/mi9110540.
4
Lorentz Force-Driven Autonomous Janus Swimmers.
J Am Chem Soc. 2021 Aug 18;143(32):12708-12714. doi: 10.1021/jacs.1c05589. Epub 2021 Aug 3.
5
Wafer-Scale Fabrication of Micro- to Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound.
ACS Nano. 2020 Jun 23;14(6):7520-7528. doi: 10.1021/acsnano.0c03311. Epub 2020 May 27.
6
A Robot Platform for Highly Efficient Pollutant Purification.
Front Bioeng Biotechnol. 2022 Jun 17;10:903219. doi: 10.3389/fbioe.2022.903219. eCollection 2022.
7
Designing Micro- and Nanoswimmers for Specific Applications.
Acc Chem Res. 2017 Jan 17;50(1):2-11. doi: 10.1021/acs.accounts.6b00386. Epub 2016 Nov 3.
8
Highly Efficient Magnetic Propulsion of NiFe Nanorod-Based Miniature Swimmers in Three Dimensions.
ACS Appl Mater Interfaces. 2021 Dec 15;13(49):58898-58907. doi: 10.1021/acsami.1c16677. Epub 2021 Dec 1.
9
Theory for controlling individual self-propelled micro-swimmers by photon nudging I: directed transport.
Phys Chem Chem Phys. 2018 Apr 18;20(15):10502-10520. doi: 10.1039/C7CP06559K.
10
Janus magnetoelastic membrane swimmers.
Soft Matter. 2023 Sep 13;19(35):6721-6730. doi: 10.1039/d3sm00788j.

引用本文的文献

1
Advances in micro-/nanorobots for cancer diagnosis and treatment: propulsion mechanisms, early detection, and cancer therapy.
Front Chem. 2025 Feb 6;13:1537917. doi: 10.3389/fchem.2025.1537917. eCollection 2025.
2
Magnetic gelatin-hesperidin microrobots promote proliferation and migration of dermal fibroblasts.
Front Chem. 2024 Oct 10;12:1478338. doi: 10.3389/fchem.2024.1478338. eCollection 2024.
3
Magnetic propelled hydrogel microrobots for actively enhancing the efficiency of lycorine hydrochloride to suppress colorectal cancer.
Front Bioeng Biotechnol. 2024 Feb 21;12:1361617. doi: 10.3389/fbioe.2024.1361617. eCollection 2024.
4
Multimode microdimer robot for crossing tissue morphological barrier.
iScience. 2023 Oct 28;26(11):108320. doi: 10.1016/j.isci.2023.108320. eCollection 2023 Nov 17.
5
6
Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field.
Materials (Basel). 2022 Nov 4;15(21):7781. doi: 10.3390/ma15217781.
7
A Robot Platform for Highly Efficient Pollutant Purification.
Front Bioeng Biotechnol. 2022 Jun 17;10:903219. doi: 10.3389/fbioe.2022.903219. eCollection 2022.
9
Vector-Controlled Wheel-Like Magnetic Swarms With Multimodal Locomotion and Reconfigurable Capabilities.
Front Bioeng Biotechnol. 2022 Apr 25;10:877964. doi: 10.3389/fbioe.2022.877964. eCollection 2022.
10
Reconfigurable Disk-like Microswarm under a Sawtooth Magnetic Field.
Micromachines (Basel). 2021 Dec 9;12(12):1529. doi: 10.3390/mi12121529.

本文引用的文献

1
Multifunctional biohybrid magnetite microrobots for imaging-guided therapy.
Sci Robot. 2017 Nov 22;2(12). doi: 10.1126/scirobotics.aaq1155.
3
A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines .
Sci Robot. 2019 Jul 31;4(32). doi: 10.1126/scirobotics.aax0613. Epub 2019 Jul 24.
5
Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification.
Sci Robot. 2017 Mar 15;2(4). doi: 10.1126/scirobotics.aam6431. Epub 2017 Mar 1.
6
Photocatalytic TiO Micromotors for Removal of Microplastics and Suspended Matter.
ACS Appl Mater Interfaces. 2019 Sep 11;11(36):32937-32944. doi: 10.1021/acsami.9b06128. Epub 2019 Aug 29.
7
Phototactic Flocking of Photochemical Micromotors.
iScience. 2019 Sep 27;19:415-424. doi: 10.1016/j.isci.2019.07.050. Epub 2019 Aug 2.
8
Motile Micropump Based on Synthetic Micromotors for Dynamic Micropatterning.
ACS Appl Mater Interfaces. 2019 Aug 7;11(31):28507-28514. doi: 10.1021/acsami.9b08159. Epub 2019 Jul 26.
9
A Macrophage-Magnesium Hybrid Biomotor: Fabrication and Characterization.
Adv Mater. 2019 Jul;31(27):e1901828. doi: 10.1002/adma.201901828. Epub 2019 May 9.
10
Mimicking the Structure and Function of Ant Bridges in a Reconfigurable Microswarm for Electronic Applications.
ACS Nano. 2019 May 28;13(5):5999-6007. doi: 10.1021/acsnano.9b02139. Epub 2019 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验