Yu Shimin, Ma Ningze, Yu Hao, Sun Haoran, Chang Xiaocong, Wu Zhiguang, Deng Jiaxuan, Zhao Shuqi, Wang Wuyi, Zhang Guangyu, Zhang Weiwei, Zhao Qingsong, Li Tianlong
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
Institute of Pharmacy, Sechenov University, 119991 Moscow, Russia.
Nanomaterials (Basel). 2019 Nov 22;9(12):1672. doi: 10.3390/nano9121672.
Recent strides in micro- and nanofabrication technology have enabled researchers to design and develop new micro- and nanorobots for biomedicine and environmental monitoring. Due to its non-invasive remote actuation and convenient navigation abilities, magnetic propulsion has been widely used in micro- and nanoscale robotic systems. In this article, a highly efficient Janus microdimer swimmer propelled by a rotating uniform magnetic field was investigated experimentally and numerically. The velocity of the Janus microdimer swimmer can be modulated by adjusting the magnetic field frequency with a maximum speed of 133 μm·s (≈13.3 body length s) at the frequency of 32 Hz. Fast and accurate navigation of these Janus microdimer swimmers in complex environments and near obstacles was also demonstrated. This efficient propulsion behavior of the new Janus microdimer swimmer holds considerable promise for diverse future practical applications ranging from nanoscale manipulation and assembly to nanomedicine.
微纳制造技术的最新进展使研究人员能够设计和开发用于生物医学和环境监测的新型微纳机器人。由于其非侵入性远程驱动和便捷的导航能力,磁驱动已广泛应用于微纳尺度的机器人系统。在本文中,对一种由旋转均匀磁场驱动的高效 Janus 微二聚体游动器进行了实验和数值研究。通过调整磁场频率可以调节 Janus 微二聚体游动器的速度,在 32 Hz 频率下最大速度可达 133 μm·s(≈13.3 体长每秒)。还展示了这些 Janus 微二聚体游动器在复杂环境和靠近障碍物时的快速准确导航。这种新型 Janus 微二聚体游动器的高效推进行为在从纳米尺度操纵和组装到纳米医学等各种未来实际应用中具有巨大潜力。